Effects of antianginal drugs on myocardial energy metabolism in coronary artery disease
1990; Wiley; Volume: 66; Issue: s4 Linguagem: Inglês
10.1111/j.1600-0773.1990.tb01609.x
ISSN1600-0773
Autores Tópico(s)Hormonal Regulation and Hypertension
ResumoPharmacology & ToxicologyVolume 66, Issue s4 p. 1-31 Effects of antianginal drugs on myocardial energy metabolism in coronary artery disease Jens Peder Bagger, Jens Peder Bagger Department of Cardiology, Skejby Sygehus, DK-8200 Aarhus N, DenmarkSearch for more papers by this author Jens Peder Bagger, Jens Peder Bagger Department of Cardiology, Skejby Sygehus, DK-8200 Aarhus N, DenmarkSearch for more papers by this author First published: April 1990 https://doi.org/10.1111/j.1600-0773.1990.tb01609.xCitations: 6 Correspondence: Jens Peder Bagger, Department of Cardiology, Skejby Sygehus, DK-8200 Aarhus N, Denmark. Tel: 45 86 78 45 1 1 AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References Andersson, K. E.: Calcium-entry blockers. A heterogeneous family of compounds. Acta Med. Scand. (Suppl) 1984, 694, 142–152. PubMedGoogle Scholar Apstein, C. S., F. Gravino & W. B. Hood: Limitations of lactate production as an index of myocardial ischemia. Circulation 1979, 60, 877–888. 10.1161/01.CIR.60.4.877 CASPubMedWeb of Science®Google Scholar Armstrong, P. W., M. A. Chiong & J. O. Parker: Effects of propranolol on the hemodynamic, coronary sinus blood flow and myocardial metabolic response to atrial pacing. Am. J. Cardiol 1977, 40, 83–89. 10.1016/0002-9149(77)90105-9 CASPubMedWeb of Science®Google Scholar Bagger, J. P.: Coronary sinus blood flow determination by the thermodilution technique: influence of catheter position and respiration. Cardiovasc. Res. 1985, 19, 27–31. 10.1093/cvr/19.1.27 CASPubMedWeb of Science®Google Scholar Bagger, J. P.: Influence of verapamil and nifedipine on cardiac haemodynamics and oxygen exchange in coronary artery disease. In: A. Fleckenstein, J. H. Laragh, eds. Hypertension, the next decade. Churchill Livingstone, Edinburgh, London, Melbourne, New York, 1987: 181–188. Google Scholar Bagger, J. P., R. Mathar, P. Paulsen, J. Gormsen & K. H. Olsen: Verapamil induced increment of oxygen extraction in the arteriosclerotic limb. Cardiovasc. Res. 1985a, 19, 567–569. 10.1093/cvr/19.9.567 CASPubMedWeb of Science®Google Scholar Bagger, J. P. & T. T. Nielsen: Influence of nifedipine on coronary haemodynamics and myocardial metabolism in coronary artery disease. Eur. Heart J. 1985b, 6, 75–84. CASPubMedWeb of Science®Google Scholar Bagger, J. P., T. T. Nielsen & P. Henningsen: The effect of verapamil on myocardial exchange of free fatty acids, citrate, lactate and glucose in coronary artery disease. Eur. Heart J. 1983a, 4, 406–414. CASPubMedWeb of Science®Google Scholar Bagger, J. P., T. T. Nielsen & P. Henningsen: Increased coronary sinus lactate concentration during pacing induced angina pectoris after clinical improvement by glyceryl trinitrate. Br. Heart J. 1983b, 50, 483–490. 10.1136/hrt.50.5.483 CASPubMedWeb of Science®Google Scholar Bagger, J. P., T. T. Nielsen & P. Henningsen: Myocardial exchange of metabolites after nitroglycerin in patients with coronary artery disease. Int. J. Cardiol. 1984, 5, 599–609. 10.1016/0167-5273(84)90171-2 CASPubMedWeb of Science®Google Scholar Bagger, J. P., T. T. Nielsen, P. Henningsen, P. E. B. Thomsen & K. Eyjolfsson: Myocardial release of citrate and lactate during atrial pacing-induced angina pectoris. Scand J. Clin. Lab. Invest 1981, 41, 431–439. 10.3109/00365518109090480 CASPubMedWeb of Science®Google Scholar Bagger, J. P., T. T. Nielsen & A. Thomassen: Reproducibility of coronary haemodynamics and cardiac metabolism during pacing-induced angina pectoris. Clin. Physiol. 1985c, 5, 359–370. 10.1111/j.1475-097X.1985.tb00756.x CASPubMedWeb of Science®Google Scholar Bagger, J. P., T. Vesterlund & T. T. Nielsen: Cardiac metabolism and coronary hemodynamics before and after bypass surgery for anomalous origin of the left main coronary artery from the pulmonary trunk. Am. J. Cardiol. 1985d, 55, 864–865. 10.1016/0002-9149(85)90182-1 CASPubMedWeb of Science®Google Scholar Balcon, R.: Assessment of drugs in angina pectoris: 3. Postgrad. Med. J. 1971, 47 (Suppl.), 53–58. PubMedGoogle Scholar Balcon, R., J. Hoy, W. Malloy & E. Sowton: Haemodynamic comparisons of atrial pacing and exercise in patients with angina pectoris. Br. Heart J. 1969, 31, 168–171. 10.1136/hrt.31.2.168 CASPubMedWeb of Science®Google Scholar Balsaver, A. M., A. R. Morales & F. W. Whitehouse: Fat infiltration of myocardium as a cause of cardiac conduction defect. Am. J. Cardiol. 1967, 19, 261–265. 10.1016/0002-9149(67)90543-7 PubMedWeb of Science®Google Scholar Berne, R. M. & R. Rubio: Coronary circulation. In: R. M. Berne, N. Speralakis, S. R. Geiger, eds. Handbook of physiology. The cardiovascular system. Vol. I. The heart. Bethesda. Am. Physiol. Soc. 1979, 873–952. Google Scholar Bhatnagar, S. K., M. M. A. Amin & A. R. Al-Yusuf: Diabetogenic effects of nifedipine. Br. Med. J. 1984, 289, 19. 10.1136/bmj.289.6436.19 CASPubMedWeb of Science®Google Scholar Biamino, G. & R. Schröder: What is the real pharmacological rationale for beta-receptor blocking agents Eur. Heart J. 1983, 4 (Suppl. D), 137–142. 10.1093/eurheartj/4.suppl_D.137 PubMedWeb of Science®Google Scholar Bihler, I.: Role of calcium in heart metabolism. Can. J. Physiol. Pharmacol. 1984, 62, 884–890. 10.1139/y84-148 CASPubMedWeb of Science®Google Scholar Bing, R. J. & J. C. Fenton: Cardiac metabolism. Ann. Rev. Med. 1965, 16, 1–20. 10.1146/annurev.me.16.020165.000245 CASPubMedWeb of Science®Google Scholar Bourassa, M. G., P. Cote, P. Theroux et al.: Hemodynamics and coronary flow following diltiazem administration in anesthetized dogs and in humans. Chest (Suppl. I), 1980, 78, 224–230. 10.1378/chest.78.1_Supplement.224 CASPubMedWeb of Science®Google Scholar Braunwald, E.: Control of myocardial oxygen consumption. Am. J. Cardiol. 1971, 27, 416–432. 10.1016/0002-9149(71)90439-5 CASPubMedWeb of Science®Google Scholar Brown, B. G., E. Bolson, R. B. Petersen, C. D. Pierce & H. T. Dodge: The mechanisms of nitroglycerin action: Stenosis vasodilatation as a major component of the drug response. Circulation 1981, 64, 1089–1097. 10.1161/01.CIR.64.6.1089 CASPubMedWeb of Science®Google Scholar Bünger, R., S. Glanert, O. Sommer & E. Gerlach: Inhibition by (aminooxy)acetate of the malate-aspartate cycle in the isolated working guinea pig heart. Hoppe-Seylers Z. Physiol. Chem. 1980, 361, 907–914. 10.1515/bchm2.1980.361.1.907 CASPubMedWeb of Science®Google Scholar Burkart, F., S. Barold & E. Sowton: Hemodynamic effects of repeated exercise. Am. J. Cardiol. 1967, 20, 509–515. 10.1016/0002-9149(67)90028-8 CASPubMedWeb of Science®Google Scholar Camici, P., J. C. Kaski, M. J. Shea et al.: Selective increase of glucose utilization in the postischemic myocardium of patients with stable angina. Hammersmith Cardiology Workshop Series. A. Maseri, ed. Raven Press, New York. 2, 81–85, 1985.. Google Scholar Carlson, L. A., L. Kaijser, S. Rossner & M. L. Wahlqvist: Myocardial metabolism of exogenous plasma triglycerides in resting man. Acta Med. Scand. 1973, 193, 233–245. 10.1111/j.0954-6820.1973.tb10569.x CASPubMedWeb of Science®Google Scholar Chamberlain, D. A.: Effects of beta adrenergic blockade on heart size. Am. J. Cardiol. 1966, 18, 321–328. 10.1016/0002-9149(66)90049-X CASPubMedWeb of Science®Google Scholar Cheema-Dhadli, S., B. H. Robinson & M. L. Halperin: Properties of the citrate transporter in rat heart: Implications for regulation of glycolysis by cytosolic citrate. Can. J. Biochem. 1976, 54, 561–565. 10.1139/o76-082 CASPubMedWeb of Science®Google Scholar Chiong, M. A., R. O. West & J. O. Parker: Influence of nitroglycerin on myocardial metabolism and hemodynamics during angina induced by atrial pacing. Circulation 1972, 45, 1044–1056. 10.1161/01.CIR.45.5.1044 CASPubMedWeb of Science®Google Scholar Chiong, M. A., R. O. West & J. O. Parker: Myocardial balance of inorganic phosphate and enzymes in man. Circulation 1974, 49, 283–290. 10.1161/01.CIR.49.2.283 CASPubMedWeb of Science®Google Scholar Clausen, J. P.: Circulatory adjustments to dynamic exercise and effect of physical training in normal subjects and in patients with coronary artery disease. Prog. Cardiovasc. Dis. 1976, 18, 459–495. 10.1016/0033-0620(76)90012-8 CASPubMedWeb of Science®Google Scholar Clausen, T.: The role of calcium in the activation of the glucose transport system. Cell Calcium 1980, 1, 311–325. 10.1016/0143-4160(80)90033-0 CASWeb of Science®Google Scholar Cote, P., P. Gueret & M. G. Bourassa: Systemic and coronary hemodynamic effects of diazepam in patients with normal and diseased coronary arteries. Circulation 1974, 50, 1210–1216. 10.1161/01.CIR.50.6.1210 CASPubMedWeb of Science®Google Scholar Cousineau, D., R. J. Ferguson, J. Champlain et al.: Catecholamines in coronary sinus during exercise in man before and after training. J. Appl. Physiol. Respirat. Environ. Exercise Physiol. 1977, 43, 801–806. CASPubMedWeb of Science®Google Scholar Cuccurullo, F., A. Cuppini, V. Tomassetti et al.: Hemodynamic and metabolic effects of nitroglycerin ointment in pacing-induced angina pectoris. Arzneim. Forsch. 1982, 32, 1479–1482. CASPubMedWeb of Science®Google Scholar Daly, K., G. Bergman, M. Rothman et al.: Beneficial effect of adding nifedipine to beta-adrenergic blocking therapy in angina pectoris. Eur. Heart J. 1982, 3, 42–46. CASPubMedWeb of Science®Google Scholar Daly, K., P. J. Richardson, G. Bergman et al.: Effect of timolol maleate on pacing induced myocardial ischaemia. Br. Heart J. 1984, 52, 628–632. 10.1136/hrt.52.6.628 CASPubMedWeb of Science®Google Scholar Day, J. L.: The metabolic consequences of adrenergic blockade: A review. Metabolism 1975, 24, 987–996. 10.1016/0026-0495(75)90090-6 PubMedWeb of Science®Google Scholar Digerness, S. B. & W. J. Reddy: The malate-aspartate shuttle in heart mitochondria. J. Mol. Cell Cardiol. 1976, 8, 779–785. 10.1016/0022-2828(76)90084-5 CASPubMedWeb of Science®Google Scholar Drake, A. J., J. R. Haines & M. I. M. Noble: Preferential uptake of lactate by the normal myocardium in dogs. Cardiovasc. Res. 1980, 14, 65–72. 10.1093/cvr/14.2.65 CASPubMedWeb of Science®Google Scholar Elia, M., V. Ilic, S. Bacon, D. H. Williamson & R. Smith: Relationship between the basal blood alanine concentration and the removal of an alanine load in various clinical states in man. Clin. Sci. 1980, 58, 301–309. 10.1042/cs0580301 CASPubMedWeb of Science®Google Scholar Ellrodt, G., C. Y. C. Chew & B. N. Singh: Therapeutic implications of slow-channel blockade in cardiocirculatory disorders. Circulation 1980, 62, 669–679. 10.1161/01.CIR.62.4.669 CASPubMedWeb of Science®Google Scholar Emanuelsson, H., Å. Hjalmarson, S. Holmberg & F. Waagstein: Effects of felodipine on systemic and coronary haemodynamics in patients with angina pectoris. Eur. Heart J. 1984a, 5, 308–316. CASPubMedWeb of Science®Google Scholar Emanuelsson, H., Å. Hjalmarson, S. Holmberg, F. Waagstein & A. Waldenstrom: Effects of nifedipine on arterial concentration and myocardial extraction of catecholamines during pacing-induced angina pectoris. J. Cardiovasc. Pharmacol. 1984b, 6, 224–232. 10.1097/00005344-198403000-00003 CASPubMedWeb of Science®Google Scholar Emanuelsson, H. & S. Holmberg: Mechanisms of angina relief after nifedipine: a hemodynamic and myocardial metabolic study. Circulation 1983, 68, 124–130. 10.1161/01.CIR.68.1.124 CASPubMedWeb of Science®Google Scholar Emanuelsson, H., S. Holmberg, K. Selin & F. Waagstein: Effects of iohexol and metrizoate on myocardial blood flow and metabolism. Acta Radiol. Suppl. 1983, 366, 121–125. CASPubMedGoogle Scholar Engel, H. J., R. Wolf, H. Hundeshagen & P. R. Lichtlen: Different effects of nitroglycerin and nifedipine on regional myocardial blood flow during pacing induced angina pectoris. Eur. Heart J. 1980, 1 (Suppl. B), 53–58. 10.1093/eurheartj/1.suppl_2.53 CASPubMedGoogle Scholar Engel, H. J. & P. R. Lichtlen: Beneficial enhancement of coronary blood flow by nifedipine. Am. J. Med. 1981, 71, 658–666. 10.1016/0002-9343(81)90230-8 CASPubMedWeb of Science®Google Scholar Farah, A. E. & A. A. Alousi: The actions of insulin on cardiac contractility. Life Sciences 1981, 29, 975–1000. 10.1016/0024-3205(81)90457-4 CASPubMedWeb of Science®Google Scholar Feldman, R. L., C. R. Conti & C. J. Pepine: Comparison of coronary hemodynamic effects of nitroprusside and sublingual nitroglycerin with anterior descending coronary arterial occlusion. Am. J. Cardiol. 1983, 52, 915–920. 10.1016/0002-9149(83)90505-2 CASPubMedWeb of Science®Google Scholar Ferlinz, J. & M. E. Turbow: Antianginal and myocardial metabolic properties of verapamil in coronary artery disease. Am. J. Cardiol. 1980, 46, 1019–1026. 10.1016/0002-9149(80)90361-6 CASPubMedWeb of Science®Google Scholar Fernandez, F., M. Belfante, A. Juillard et al.: Effets du diltiazem sur les circulations cardiaque et coronaire, au repos et au cours de la stimulation electrique auriculaire rapide. Arch. Mal. Coeur. 1983, 76, 61–70. CASPubMedWeb of Science®Google Scholar Ferrer, M. I., S. E. Bradley, H. O. Wheeler et al.: Some effects of nitroglycerin upon the splanchnic, pulmonary, and systemic circulations. Circulation 1966, 33, 357–373. 10.1161/01.CIR.33.3.357 CASPubMedWeb of Science®Google Scholar Forrester, J. S., R. H. Helfant, A. Pasternac et al.: Atrial pacing in coronary heart disease. Am. J. Cardiol. 1971, 27, 237–243. 10.1016/0002-9149(71)90296-7 CASPubMedWeb of Science®Google Scholar Fox, A. C., G. E. Reed, E. Glassman, A. J. Kaltman & B. B. Silk: Release of adenosine from human hearts during angina induced by rapid atrial pacing. J. Clin. Invest. 1974, 53, 1447–1457. 10.1172/JCI107693 CASPubMedWeb of Science®Google Scholar Fox, K. A. A., D. R. Abendschein, H. D. Ambos, B. E. Sobel & S. R. Bergmann: Efflux of metabolized and nonmetabolized fatty acid from canine myocardium. Circ. Res. 1985, 57, 232–243. 10.1161/01.RES.57.2.232 CASPubMedWeb of Science®Google Scholar Fox, K. A. A., R. M. Knabb, S. R. Bergmann & B. E. Sobel: Progress in cardiac positron emission tomography with emphasis on carbon-11 labeled palmitate and oxygen-15 labeled water. In: E. E. Van der Wall, ed. Noninvasive imaging of cardiac metabolism. Dordrect, Boston, Lancaster: Martinus Nijhoff Pub. 1987: 203–240. 10.1007/978-94-009-3287-6_10 Web of Science®Google Scholar Freminet, A., L. Leclerc, C. Poyart & M. Gentil: Alanine and succinate accumulation in the perfused rat heart hypoxia. J. Physiol. 1980, 76, 113–117. CASWeb of Science®Google Scholar Gailis, L. & E. Benmoyal: Endogenous alanine, glutamate, aspartate and glutamine in the perfused guinea pig heart. Can. J. Biochem. 1972, 51, 11–20. 10.1139/o73-003 Web of Science®Google Scholar Ganz, W. & H. S. Marcus: Failure of intracoronary nitroglycerin to alleviate pacing-induced angina. Circulation 1972, 46, 880–889. 10.1161/01.CIR.46.5.880 CASPubMedWeb of Science®Google Scholar Ganz, W., K. Tamura, H. S. Marcus et al.: Measurement of coronary sinus blood flow by continuous thermodilution in man. Circulation 1971, 44, 181–195. 10.1161/01.CIR.44.2.181 CASPubMedWeb of Science®Google Scholar Garland, P. B., P. J. Randle & E. A. Newsholme: Citrate as an intermediary in the inhibition of phosphofructokinase in rat heart muscle by fatty acids, ketone bodies, pyruvate, diabetes and starvation. Nature 1963, 200, 169–170. 10.1038/200169a0 CASPubMedWeb of Science®Google Scholar Gatsura, V. V.: Pharmacological correction of the energy metabolism of the ischemic myocardium. Pharmac. Ther. 1985, 27, 297–332. 10.1016/0163-7258(85)90073-7 CASPubMedWeb of Science®Google Scholar Gertz, E. W., J. A. Wisneski, R. Neese et al.: Myocardial lactate metabolism: Evidence of lactate release during net chemical extraction in man. Circulation 1981, 63, 1273–1279. 10.1161/01.CIR.63.6.1273 CASPubMedWeb of Science®Google Scholar Gertz, E. W., J. A. Wisneski, R. Neese et al.: Myocardial lactate extraction: Multi-determined metabolic function. Circulation 1980, 61, 256–261. 10.1161/01.CIR.61.2.256 CASPubMedWeb of Science®Google Scholar Gewirtz, H., G. A. Beller, H. W. Strauss et al.: Transient defects of resting thallium scans in patients with coronary artery disease. Circulation 1979, 59, 707–713. 10.1161/01.CIR.59.4.707 CASPubMedWeb of Science®Google Scholar Giugliano, D., R. Torella, F. Cacciapuoti et al.: Impairment of insulin secretion in man by nifedipine. Eur. J. Clin. Pharmacol. 1980, 18, 395–398. 10.1007/BF00636791 CASPubMedWeb of Science®Google Scholar Glick, G., J. F. Williams Jr., D. C. Harrison, A. G. Morrow & E. Braunwald: Cardiac dimensions in intact unanesthetized man. VI. Effects of changes in heart rate. J. Appl. Physiol. 1966, 21, 947–958. CASPubMedWeb of Science®Google Scholar Glossman, H., D. Ferry, F. Lubbecke, R. Mewes & F. Hoffmann: Identification of voltage operated calcium channels by binding studies: differentiation of subclasses of calcium antagonist drugs with 3H-nimodipine radioligand binding. J. Recept. Res. 1983, 3, 177–190. 10.3109/10799898309041932 PubMedWeb of Science®Google Scholar Gmeiner, R.: Effect of nitroglycerin on the mechanical and metabolic performance of the isolated aerobic and hypoxic rat heart. Eur. J. Cardiol. 1974, 2, 47–54. CASPubMedWeb of Science®Google Scholar Goldstein, R. E. & S. E. Epstein: Medical management of patients with angina pectoris. Prog. Cardiovasc. Dis. 1972, 14, 360–398. 10.1016/0033-0620(72)90032-1 CASPubMedGoogle Scholar Griggs, D. M., V. V. Tchokoev & C. C. Chen: Transmural differences in ventricular tissue substrate levels due to coronary constriction. Am. J. Physiol. 1972, 222, 705–709. 10.1152/ajplegacy.1972.222.3.705 CASPubMedWeb of Science®Google Scholar Haneda, T., Y. Miura, T. Arai et al.: Norepinephrine levels in the coronary sinus in patients with cardiovascular diseases at rest and during isometric handgrip exercise. Am. Heart J. 1980, 100, 465–472. 10.1016/0002-8703(80)90658-4 CASPubMedWeb of Science®Google Scholar Hecht, H. S., C. Y. C. Chew, M. H. Burnam et al.: Verapamil in chronic stable angina: Amelioration of pacing-induced abnormalities of left ventricular ejection fraction, regional wall motion, lactate metabolism and hemodynamics. Am. J. Cardiol. 1981, 48, 536–544. 10.1016/0002-9149(81)90085-0 CASPubMedWeb of Science®Google Scholar Helfant, R. H., J. S. Forrester, J. R. Hampton et al.: Coronary heart disease. Differential hemodynamic, metabolic, and electrocardiographic effects in subjects with and without angina pectoris during atrial pacing. Circulation 1970, 42, 601–610. 10.1161/01.CIR.42.4.601 CASPubMedWeb of Science®Google Scholar Heller, G. V., J. M. Aroesty, R. G. McKay et al.: The pacing stress test: A reexamination of the relation between coronary artery disease and pacing-induced electrocardiographic changes. Am. J. Cardiol. 1984, 54, 50–55. 10.1016/0002-9149(84)90302-3 CASPubMedWeb of Science®Google Scholar Henry, P. D.: Comparative pharmacology of calcium antagonists: nifedipine, verapamil and diltiazem. Am. J. Cardiol. 1980, 46, 1047–1058. 10.1016/0002-9149(80)90366-5 CASPubMedWeb of Science®Google Scholar Herman, M. V., W. C. Elliott & R. Gorlin: An electrocardiographic, anatomic, and metabolic study of zonal myocardial ischemia in coronary heart disease. Circulation 1967, 35, 834–846. 10.1161/01.CIR.35.5.834 CASPubMedWeb of Science®Google Scholar Holmberg, S. & E. Varnauskas: Coronary circulation during pacing-induced tachycardia. Acta Med. Scand. 1971, 190, 481–490. 10.1111/j.0954-6820.1971.tb07463.x CASPubMedWeb of Science®Google Scholar Holtermann, W. R. & W. Lochner: Effects of nitroglycerin, dipyridamole, carbochromen, xantinol nicotinate, and butallylonal on venous return. Arzneim. Forsch. 1972, 22, 1376–1381. CASPubMedWeb of Science®Google Scholar Hood, W. B. Jr.: Regional venous drainage of the human heart. Br. Heart J. 1968, 30, 105–109. 10.1136/hrt.30.1.105 PubMedWeb of Science®Google Scholar Horwitz, L. D., R. Gorlin, W. J. Taylor & H. G. Kemp: Effects of nitroglycerin on regional myocardial blood flow in coronary artery disease. J. Clin. Invest. 1971, 50, 1578–1584. 10.1172/JCI106645 CASPubMedWeb of Science®Google Scholar Ihlen, H., E. Myhre & P. Opstad: Evaluation of potential adverse effects of sodium nitroprusside during pacing-induced myocardial ischaemia in man. Eur. Heart J. 1984a, 10, 834–841. Google Scholar Ihlen, H., E. Myhre & H. J. Smith: Potential deleterious haemodynamic effects of glyceryl trinitrate on myocardial ischaemia in man. Br. Heart J. 1984b, 52, 510–515. 10.1136/hrt.52.5.510 CASPubMedWeb of Science®Google Scholar Ihlen, H., S. Simonsen & K. Vatne: Reproducibility of ischaemic lactate metabolism during atrial pacing in man. Cardiology 1983, 70, 177–183. 10.1159/000173591 CASPubMedWeb of Science®Google Scholar Jackson, G., L. Atkinson & S. Oram: Improvement of myocardial metabolism in coronary arterial disease by beta-blockade. Br. Heart J. 1977, 39, 829–833. 10.1136/hrt.39.8.829 CASPubMedWeb of Science®Google Scholar Jefferson, L. S.: Role of insulin in the regulation of protein synthesis. Diabetes 1980, 29, 487–495. 10.2337/diab.29.6.487 CASPubMedWeb of Science®Google Scholar Josephson, M. A., J. Hopkins & B. N. Singh: Hemodynamic and metabolic effects of diltiazem during coronary sinus pacing with particular reference to left ventricular ejection fraction. Am. J. Cardiol. 1985, 55, 286–290. 10.1016/0002-9149(85)90362-5 CASPubMedWeb of Science®Google Scholar Kaijser, L.: Regulatory mechanisms in the interaction of lipid and carbohydrate metabolism in cardiac and skeletal muscle in man. In: L. A. Carlson, B. Pernow, eds. Metabolic risk factors in ischemic cardiovascular disease. Raven Press, New York. 1982: 149–158. Google Scholar Kaijser, L., L. A. Carlson, B. Eklund et al.: Substrate uptake by the ischaemic human heart during angina induced by atrial pacing. In: M. F. Oliver, D. G. Julian, K. W. Donald, eds. Effect of acute ischaemia on myocardial function. Churchill Livingstone, Edinburgh. 1972: 223–233. Google Scholar Kaltenbach, M., W. Schulz & G. Kober: Effects of nifedipine after intravenous and intracoronary administration. Am. J. Cardiol. 1979, 44, 832–838. 10.1016/0002-9149(79)90205-4 CASPubMedWeb of Science®Google Scholar Kammermeier, H., B. Wein, P. Gerards et al.: Barriers in cardiac substrate supply. Basic Res. Cardiol 1985, 80 (Suppl. 2), 89–92. CASPubMedWeb of Science®Google Scholar Katz, L. N. & H. Feinberg: The relation of cardiac effort to myocardial oxygen consumption and coronary flow. Circ. Res. 1958, 6, 656–669. 10.1161/01.RES.6.5.656 CASPubMedWeb of Science®Google Scholar Kenny, J., K. Daly, G. Bergman, S. Kerkez & D. E. Jewitt: Beneficial effects of diltiazem in coronary artery disease. Br. Heart J. 1984, 52, 53–56. 10.1136/hrt.52.1.53 CASPubMedWeb of Science®Google Scholar Kenny, J., K. Daly, G. Bergman, S. Kerkez & D. E. Jewitt: Beneficial effects of diltiazem combined with beta blockade in angina pectoris. Eur. Heart J. 1985, 6, 418–423. CASPubMedWeb of Science®Google Scholar Kerbey, A. L., P. J. Randle, R. H. Cooper et al.: Regulation of pyruvate dehydrogenase in rat heart. Biochem. J. 1976, 154, 327–348. 10.1042/bj1540327 CASPubMedWeb of Science®Google Scholar Khaja, F., J. O. Parker, R. J. Ledwich, R. O. West & P. W. Armstrong: Assessment of ventricular function in coronary artery disease by means of atrial pacing and exercise. Am. J. Cardiol. 1970, 26, 107–116. 10.1016/0002-9149(70)90767-8 CASPubMedWeb of Science®Google Scholar Knapp, W. H., F. Helus, H. Ostertag, H. Tillmanns & W. Kubler: Uptake and turnover of L-(N-13)-glutamate in the normal human heart and in patients with coronary artery disease. Eur. J. Nucl. Med. 1982, 7, 211–215. 10.1007/BF00256466 CASPubMedWeb of Science®Google Scholar Kobayashi, K. & J. R. Neely: Control of maximum rates of glycolysis in rat cardiac muscle. Circ. Res. 1979, 44, 166–175. 10.1161/01.RES.44.2.166 CASPubMedWeb of Science®Google Scholar Kongtahworn, C., E. Foster, E. E. Mason & K. J. Printen: Heparin-induced elevation of free fatty acids in diabetic patients. Surgery 1973, 74, 30–33. CASPubMedWeb of Science®Google Scholar Krasnow, N., E. L. Rolett, P. M. Yurchak, W. B. Hood & R. Gorlin: Isoproterenol and cardiovascular performance. Am. J. Med. 1964, 37, 514–525. 10.1016/0002-9343(64)90065-8 CASPubMedWeb of Science®Google Scholar Krebs, H. A.: The Pasteur effect and the relations between respiration and fermentation. Essays Biochem. 1972, 8, 1–34. CASPubMedGoogle Scholar Kübler, W. & P. G. Spieckermann: Regulation of glycolysis in the ischemic and the anoxic myocardium. J. Mol. Cell Cardiol. 1970, 1, 351–377. 10.1016/0022-2828(70)90034-9 CASPubMedGoogle Scholar Kugler, G.: Myocardial release of inosine, hypoxanthine and lactate during pacing-induced angina in humans with coronary artery disease. Eur. J. Cardiol. 1979a, 9, 227–240. CASPubMedWeb of Science®Google Scholar Kugler, G.: The effect of pindolol on myocardial release of inosine hypoxanthine and lactate during pacing-induced angina. J. Pharmac. exp. Ther. 1979b, 209, 185–189. CASPubMedWeb of Science®Google Scholar Kupper, W., C. W. Hamm & W. Bleifeld: The effect of pindolol on myocardial blood flow, metabolism and function during rest and pacing in patients with coronary heart disease. Br. J. Clin. Pharmac. 1982, 13, 309S–312S. 10.1111/j.1365-2125.1982.tb01932.x CASPubMedWeb of Science®Google Scholar Kurita, A., K. Isojima, K. Mizuno et al.: Effects of new calcium channel blocker of niludipine on the coronary hemodynamics, diastolic properties, and metabolic responses to tachycardia stress in patients with coronary artery disease. Cath. Cardiovasc. Diag. 1982, 8, 373–381. 10.1002/ccd.1810080406 CASPubMedWeb of Science®Google Scholar Lambert, C. R., J. A. Hill, R. L. Feldman & C. J. Pepine: Effects of nicardipine on left ventricular function and energetics in man. Int. J. Cardiol. 1986, 10, 237–249. 10.1016/0167-5273(86)90006-9 CASPubMedWeb of Science®Google Scholar Lassers, B. W., L. Kaijser & L. A. Carlson: Myocardial lipid and carbohydrate metabolism in healthy fasting men at rest: Studies during continuous infusion of 3H-Palmitate. Eur. J. Clin. Invest. 1972, 2, 348–358. 10.1111/j.1365-2362.1972.tb00661.x CASPubMedWeb of Science®Google Scholar Lassers, B. W., M. L. Wahlqvist, L. Kaijser & L. A. Carlson: Relationship in man between plasma free fatty acids and myocardial metabolism of carbohydrate substrates. Lancet 1971, ii, 448–450. 10.1016/S0140-6736(71)92624-9 CASGoogle Scholar Laver, M. B.: Myocardial ischaemia. Dilemma between information available and information demand. Br. Heart J. 1983, 50, 222–228. 10.1136/hrt.50.3.222 CASPubMedWeb of Science®Google Scholar Lech, J. J., G. J. Jesmok & D. N. Calvert: Effects of drugs and hormones on lipolysis in heart. Fed. Proc. 1977, 36, 2000–2008. CASPubMedWeb of Science®Google Scholar Lee, S. J. K., Y. K. Sung & A. J. Zaragoza: Effects of nitroglycerin on left ventricular volumes and wall tension in patients with ischaemic heart disease. Br. Heart J. 1970, 32, 790–794. 10.1136/hrt.32.6.790 CASPubMedWeb of Science®Google Scholar Lewi
Referência(s)