Perspective on the Development of High‐Toughness Ceramics
1990; Wiley; Volume: 73; Issue: 2 Linguagem: Inglês
10.1111/j.1151-2916.1990.tb06493.x
ISSN1551-2916
Autores Tópico(s)Aluminum Alloys Composites Properties
ResumoJournal of the American Ceramic SocietyVolume 73, Issue 2 p. 187-206 Perspective on the Development of High-Toughness Ceramics Anthony G. Evans, Anthony G. Evans Materials Department, College of Engineering, University of California, Santa Barbara, California 93106 Member, American Ceramic Society.Search for more papers by this author Anthony G. Evans, Anthony G. Evans Materials Department, College of Engineering, University of California, Santa Barbara, California 93106 Member, American Ceramic Society.Search for more papers by this author First published: February 1990 https://doi.org/10.1111/j.1151-2916.1990.tb06493.xCitations: 1,329 Presented in part at the 91st Annual Meeting of the American Ceramic Society, Indianapolis, IN, April 24, 1989 (Orton Memorial Lecture). A. H. Heuer—contributing editor AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 F. F. Lange, “Powder Processing Science and Technology for Increased Reliability,” J. Am. Ceram. Soc., 72 [1] 3–15 (1989). 2 R. W. Rice, Treatise On Materials Science and Technology, Vol. II; pp. 191–381. Academic Press, New York , 1978. 3 A. G. Evans, “Structural Reliability: A Processing-Dependent Phenomenon,” J. Am. Ceram. Soc., 65 [3] 127–37 (1982). 4 A. G. Evans, “New Opportunities in the Processing of High-Reliability Structural Ceramics”; pp. 989–1010 in Ceramic Transactions, Vol. 1, Ceramic Powder Science. Edited by G. L. Messing, and H. Hausner. American Ceramic Society, Westerville , OH , 1989. 5 R. F. Cook, B. R. Lawn, and C. J. Fairbanks, “Microstructure-Strength Properties in Ceramics: I, Effect of Crack Size on Toughness,” J. Am. Ceram. Soc., 68 [11] 604–15 (1985). 6 D. B. Marshall, “Strength Characteristics or Transformation-Toughened Zirconia,” J. Am. Ceram. Soc., 69 [3] 173–80 (1986). 7 D. Shetty and J. Wang, “Crack Stability and Strength Distribution of Ceramics That Exhibit Rising Crack-Growth-Resistance [R-Curve] Behavior,” J. Am. Ceram. Soc., 72 [7] 1158–62 (1989). 8 A. G. Evans and R. M. Cannon, “Toughening of Brittle Solids by Martensitic Transformations,” Acta Metall., 34 [5] 761–800 (1986). 9 R. M. McMeeking and A. G. Evans, “Mechanics of Transformation-Toughening in Brittle Materials,” J. Am. Ceram. Soc., 65 [5] 242–47 (1982). 10 B. Budiansky, J. W. Hutchinson, and J. C. Lambropolous, “Continuum Theory of Dilatant Transformation Toughening in Ceramics,” Int. J. Solids Struct., 19 [4] 337–55 (1983). 11 D. B. Marshall, M. D. Drory, and A. G. Evans, “Transformation Toughening in Ceramics”; pp. 289–307 in Fracture Mechanics of Ceramics, Vol. 6. Edited by R. C. Bradt, A. G. Evans, F. F. Lange, and D. P. H. Hasselman. Plenum Press, New York , 1983. 12 D. M. Stump and B. Budiansky, “Crack Growth Resistance in Transformation-Toughened Ceramics,” Int. J. Solids Struct., 25, 635–46 (1989). 13 B. Budiansky, J. C. Amazigo, and A. G. Evans. “Small-Scale Crack Bridging and the Fracture Toughness of Particulate-Reinforced Ceramics,” J. Mech. Phys. Solids, 36 [2] 167–87 (1988). 14 A. G. Evans and R. M. McMeeking, “On Toughening of Ceramics by Strong Reinforcements,” Acta Metall., 34, 2435–41 (1986). 15 J. C. Amazigo and B. Budiansky, “Interaction of Particulate and Transformation Toughening,” J. Mech. Phys. Solids, 36, 581–95 (1988). Harvard University Report, MECH-112 (1989). 16 J. Aveston, G. A. Cooper, and A. Kelly, “Single and Multiple Fracture”; pp. 15–26 in Conference Proceedings of the National Physical Laboratory: Properties of Fiber Composites. IPC Science and Technology Press, Surrey , England , 1971. 17 B. Budiansky, J. W. Hutchinson, and A. G. Evans, “Matrix Fracture in Fiber-Reinforced Ceramics,” J. Mech. Phys. Solids, 34, 167–89 (1986). 18 D. B. Marshall, B. N. Cox, and A. G. Evans, “The Mechanics of Matrix Cracking in Brittle-Matrix Fiber Composites,” Acta Metall., 33, 2013–21 (1985). 19 L. N. McCartney, “Mechanics of Matrix Cracking in Brittle-Matrix Fiber-Reinforced Composites,” Proc. R. Soc. London, Series A–Mathematical and Physical Sciences, 409 [1837] 329–50 (1987). 20 M. V. Swain and L. R. F. Rose, “Strength Limitations of Transformation-Toughened Zirconia Alloys,” J. Am. Ceram. Soc., 69 [7] 511–18 (1986). 21 A. G. Evans, N. H. Burlingame, W. M. Kriven, and M. D. Drory, “martensitic Transformations in Zirconia Particle Size Effects and Toughening,” Acta Metall., 29, 447–56 (1981). 22 R. Dauskhardt, D. K. Veirs, and R. O. Ritchie, “Spatially Resolved Raman Spectroscopy Study of Transformed Zones in Magnesia-Partially-Stabilized Zirconia,” J. Am. Ceram. Soc., 72 [7] 1124–30 (1989). 23 I. W. Chen and P. E. Reyes-Morel, “Implications of Transformation Plasticity in ZrO2-Containing Ceramics: I, Shear and Dilitation Effects,” J. Am. Ceram. Soc., 69 [3] 181–89 (1986). 24 L. R. F. Rose, “Kinematical Model for Stress-Induced Transformation around Cracks,” J. Am. Ceram. Soc., 69 [3] 208–12 (1986). 25 M. Rühle, N. Claussen, and A. H. Heuer, “Transformation and Microcrack Toughening as Complementary Processes in ZrO2-Toughened Al2O3,” J. Am. Ceram. Soc., 69 [3] 195–97 (1986). 26 D. J. Green, R. H. J. Hannink, and M. V. Swain, Transformation Toughening of Ceramics; pp. 1–19. CRC Press, Inc., Boca Raton , FL , 1989. 27 F. E. Buresch, “A Structure Sensitive KIC-Value and Its Dependence on Grain Size Distribution, Density and Microcrack Interaction”; pp. 835–47 in Fracture Mechanics of Ceramics, Vol. 4. Edited by R. C. Bradt, and F. F. Lange. Plenum, New York , 1975. 28 R. G. Hoagland, A. P. Rosenfield, and G. T. Hahn, Metall. Trans., 3, 123 (1972). 29 R. G. Hoagland, J. D. Embury, and D. J. Green, “On the Density of Microcracks Formed During the Fracture of Ceramics,” Scr. Metall., 9 [9] 907–909 (1975). 30 A. G. Evans, “On the Formation of a Crack Tip Microcrack Zone,” Scr. Metall., 10, 93 (1976). 31 M. Rühle, A. G. Evans, R. M. McMeeking, P. G. Charalambides, and J. W. Hutchinson, “Microcrack Toughening in Alumina/Zirconia,” Acta Metall., 35 [11] 2701–10 (1987). 32 K. T. Faber, “Microcrack Toughening in SiC/TiB2”; unpublished work. 33 A. G. Evans and K. T. Faber, “Crack-Growth Resistance of Microcracking Brittle Materials,” J. Am. Ceram. Soc., 67 [4] 255–60 (1984). 34 J. W. Hutchinson, “Crack Tip Shielding by Microcracking in Brittle Solids,” Acta Metall., 35 [7] 1605–19 (1987). 35 A. Quinten and V. Arnold, “Observation of Stable Crack Growth Using a Scanning Acoustic Microscope”; to be published in Mater. Sci. Eng.. 36 B. Budiansky and R. J. O'Connell, “Elastic Moduli of a Cracked Solid,” Int. J. Solids Struct., 12 [2] 81–97 (1976). 37 (a) W. Shum, “Bridging Effects on Toughness”; Ph.D. Thesis. Harvard University, Cambridge , MA , (1989). (b) W. Shum, and J. W. Hutchinson; unpublished work. 38 J. R. Rice, Harvard University Report, MECH-116 (1989). 39 V. D. Krstic, Philos. Mag., A48, 695 (1983). 40 M. F. Ashby, F. J. Blunt, and M. Bannister, “Flow Characteristics of Highly Constrained Metal Wires,” Acta Metall., 37 [7] 1847–57 (1989). 41 L. S. Sigl, P. Mataga, B. J. Dalgleish, R. M. McMeeking, and A. G. Evans, “On the Toughness of Brittle Materials Reinforced with a Ductile Phase,” Acta Metall., 36 [3] 517–22 (1988). 42 D. B. Marshall, M. Shaw, A. H. Heuer, M. Readey, R. O. Ritchie, and R. H. Dauskardt; unpublished work. 43 P. Hing and G. W. Groves, “The Strength and Fracture Toughness of Polycrystalline Magnesium Oxide Containing Metallic Particles and Fibres,” J. Mater. Sci., 7 [4] 427–34 (1972). 44 G. A. Cooper and A. Kelly, “Tensile Properties of Fiber-Reinforced Metals—Fracture Mechanics,” J. Mech. Phys. Solids, 15 [4] 279–94 (1967). 45 W. W. Gerberich, J. Mech. Phys. Solids, 19, 71 (1971). 46 C. K. Elliott, G. R. Odette, G. E. Lucas, and J. W. Sheckard, “Toughening Mechanisms in Intermetallic γ-TiAl Alloys Containing Ductile Phases,” Mater. Res. Soc. Proc., 120, 95–102 (1988). 47 H. C. Cao, B. J. Dalgleish, H. E. Dève, C. K. Elliott, A. G. Evans, R. Mehrabian, and G. R. Odette, “A Test Procedure for Characterizing the Toughening of Brittle Intermetallics by Ductile Reinforcements,” Acta Metall., 37 [11] 2969–77 (1989). 48 W. W. Gerberich and E. Kurman, “New Contributions to the Effective Surface-Energy Cleavage,” Scr. Metall., 19 [3] 295–98 (1985). 49 M. S. Newkirk, A. W. Urqhart, and H. R. Zwicker, J. Mater. Res., 1, 81 (1986). 50 B. Flinn, M. Rühle, and A. G. Evans, “Toughening in Composites of Al2O3 Reinforced with Al,” Acta Metall., 37 [11] 3001–3002 (1989). 51 V. K. Sarin, (ed.), “Science of Hard Materials-3,” Mater. Sci. Eng., A105/106, 5–21 (1988). 52 B. Budiansky and J. C. Amazigo, “Toughening by Aligned, Frictionally Constrained Fibers,” J. Mech. Phys. Solids, 37 [1] 93–109 (1989). 53 (a) L. R. F. Rose, “Crack Reinforcement by Distributed Springs,” J. Mech. Phys. Solids, 35 [4] 383–405 (1987). (b) P. Mataga, “Toughening by Ductile Particles”; to be published in Acta Metall.. 54 L. S. Sigl and E. Exner, “Experimental Study of the Mechanics of Fracture in WC-Co Alloys,” Metall. Trans. A, 18, 1299–308 (1987). 55 L. S. Sigl and H. F. Fischmeister, “On the Fracture-Toughness of Cemented Carbides,” Acta Metall., 36 [4] 887–97 (1988). 56 M. He and J. W. Hutchinson, “Kinking of a Crackout of an Interface,” J. Appl. Mech., 56, 270–78 (1989). 57 P. G. Charalambides and A. G. Evans, “Debonding Properties of Residually Stressed Brittle-Matrix Composites,” J. Am. Ceram. Soc., 72 [5] 746–53 (1989). 58 L. S. Sigl and A. G. Evans, “Effects of Residual Stress and Frictional Sliding on Cracking and Pull-Out in Brittle Matrix Composites,” Mech. Mater., 8, 1–12 (1989). 59 M. D. Thouless and A. G. Evans, “Effect of Pull-Out on the Mechanical Properties of Brittle Matrix Composites,” Acta Metall., 36 [3] 517–22 (1988). 60 K. M. Prewo and J. J. Brennan, “Silicon Carbide-Fiber-Reinforced Glass-Ceramic-Matrix Composites Exhibiting High Strength and Toughness,” J. Mater. Sci., 17, 1201–206 (1982). 61 D. B. Marshall and A. G. Evans, “Failure Mechanisms in Ceramic-Fiber/Ceramic-Matrix Composites,” J. Am. Ceram. Soc., 68 [5] 225–31 (1985). 62 H. C. Cao, E. Bischoff, M. Rühle, A. G. Evans, D. B. Marshall, J. J. Brennan, and O. Sbaizero, “The Effect of Interfaces on the Mechanical Performance of Fiber-Reinforced Brittle Materials”; to be published in J. Am. Ceram. Soc.. 63 (a) D. C. Phillips, “The Fracture Energy of Carbon-Fibre-Reinforced Glass,” J. Mater. Sci., 7 [10] 1175–91 (1972). (b) E. Bischoff, O. Sbaizero, M. Rühle, and A. G. Evans, “Microstructural Studies of the Interfacial Zone of a SiC-Fiber-Reinforced Lithium Aluminum Silicate Glass-Ceramic,”J. Am. Ceram. Soc., 72 [5] 741–45 (1989). 64 H. L. Oh and I. Finnie, Int. J. Fract. Mech., 6, 287 (1970). 65 M. D. Thouless, O. Sbaizero, L. S. Sigl, and A. G. Evans, “Effect of Interface Mechanical Properties on Pullout in SiC-Fiber-Reinforced Lithium Aluminum Silicate Glass-Ceramic,” J. Am. Ceram. Soc., 72 [4] 525–32 (1989). 66 G. H. Campbell, B. J. Dalgleish, M. Rühle, and A. G. Evans, “Whisker Toughening: A Comparison between Al2O3 and Si3N4 Toughened with SiC”; to be published in J. Am. Ceram. Soc.. 67 C. L. Hom, O. Sbaizero, and A. G. Evans, “Resistance Curves in Fiber-Toughened Ceramics”; unpublished work. 68 M. Rühle, B. J. Dalgleish, and A. G. Evans, “On the Toughening of Ceramics by Whiskers,” Scr. Metall., 21, 681–86 (1987). 69 K. M. Prewo, “Tension and Flexural Strength of Silicon Carbide Fibre-Reinforced Glass Ceramics,” J. Mater. Sci., 21 [10] 3590–600 (1986). 70 D. B. Marshall and W. Oliver, “Measurement of Interfacial Mechanical Properties in Fiber-Reinforced Ceramic Composites,” J. Am. Ceram. Soc., 70 [8] 542–48 (1987). Citing Literature Volume73, Issue2February 1990Pages 187-206 ReferencesRelatedInformation
Referência(s)