Synthesis and characterization of mesoporous niobium-doped silica molecular sieves
1997; Wiley; Volume: 43; Issue: S11 Linguagem: Inglês
10.1002/aic.690431326
ISSN1547-5905
Autores Tópico(s)Polyoxometalates: Synthesis and Applications
ResumoAIChE JournalVolume 43, Issue S11 p. 2793-2801 Sol-Gel and Wet Chemical Synthesis Synthesis and characterization of mesoporous niobium-doped silica molecular sieves Lei Zhang, Lei Zhang Dept. of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139Search for more papers by this authorJackie Y. Ying, Corresponding Author Jackie Y. Ying Dept. of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139Dept. of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139Search for more papers by this author Lei Zhang, Lei Zhang Dept. of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139Search for more papers by this authorJackie Y. Ying, Corresponding Author Jackie Y. Ying Dept. of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139Dept. of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139Search for more papers by this author First published: 17 June 2004 https://doi.org/10.1002/aic.690431326Citations: 41AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Hexagonally-packed mesoporous Nb-doped silica molecular sieves were hydrothermally synthesized with various siliceous sources and dopant concentration levels. The microstructure of mesoporous materials was characterized by a variety of physico-chemical methods. The pore packing order of the Nb-doped material depended strongly on the synthesis conditions such as aging temperature, pH of reaction mixture, surfactantto-Si ratio, and dopant concentration. Different silica precursors gave rise to different reactivity with the Nb dopants and interactions with the surfactants. The pore size and surface area of the materials can be systematically varied. The chemical environment of the Nb dopants in the silica framework was studied by XPS, EPR, PA-FTIR, UV-Vis, and 29Si MAS NMR. The results indicated that the Nb5+ ions were well dispersed in the framework of the mesoporous silica. The diffuse-reflectance UV-Vis spectrum of the mesoporous Nb-doped silica is red-shifted with respect to pure mesoporous silica. The 29Si MAS NMR spectrum contained a broad component at about −105 ppm, which may have been attributed to the presence of Nb-O-Si bonding in the mesostructure. Literature Cited Alquier, C., M. T. Vandenborre, and M. Henry, "Synthesis of Niobium Pentoxides Gels," J. Non-Cryst. Solids, 79, 383 (1986). Antonelli, D. M., A. Nakahira, and J. Y. Ying, "Ligand-Assisted Liquid Crystal Templating in Mesoporous Niobium Oxide Molecular Sieves," Inorg. Chem., 35, 3126 (1996). Antonelli, D. M., and J. Y. Ying, "Mesoporous Materials," Curr. Op. Coll. Interf. Sci., 1, 523 (1996a). Antonelli, D. M., and J. Y. Ying, "Synthesis of Stable Hexagonally-Packed Mesoporous Niobium Oxide Molecular Sieves Through a Novel Ligand-Assisted Templating Mechanism," Angew. Chem. Int. Ed. Engl., 35, 426 (1996b). Barrett, E. P., L. G. Joyner, and P. P. Halenda, "The Determination of Pore Volume and Area Distribution in Porous Substances. I. Computations from Nitrogen Isotherms," J. Amer. Chem. Soc., 73, 373 (1951). Beard, W. C., " Infrared Studies of Aqueous Silicate Solutions," Molecular Sieves, R. F. Gould, ed., Amer. Chem. Soc., p. 162 (1973). Beck, J. S., J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T.-W. Chu, D. H. Olsen, E. W. Sheppard, S. B. McCullen, J. B. Higgins, and J. L. Schlenker, "A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates," J. Amer. Chem. Soc., 114, 10, 834 (1992). Beck, J. S., J. C. Vartuli, G. J. Kennedy, C. T. Kresge, W. J. Roth, and S. E. Schramm, "Molecular or Supramolecular Templating: Defining the Role of Surfactant Chemistry in the Formation of Microporous and Mesoporous Molecular Sieves," Chem. Mater., 6, 1816 (1994). Bellussi, G., and M. S. Rigutto, "Advanced Zeolite Science and Applications," Stud. Surf. Sci. Catal., 85, 177 (1994). Brack, D. W., and E. M. Flanigan, Molecular Sieves, Soc. of Chem. Ind., p. 47 (1968). Brinker, C. J., "Porous Inorganic Materials," Curr. Op. Solid State Mater. Sci., 1, 798 (1996). Brinker, C. J., and G. W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press, Boston (1990). Carvalho, W. A., P. B. Varaldo, M. Wallu, and U. Schuchardt, "Mesoporous Redox Molecular Sieves Analogous to MCM-41," Zeolites, 18, 408 (1997). Chen, C.-Y., S. L. Burkett, H.-X. Li, and M. E. Davis, "Studies on Mesoporous Materials: II. Synthesis Mechanism of MCM-41," Microporous Mater., 2, 27 (1993). Cheng, C. F., H. He, W. Zhou, J. Klinowski, J. A. Sousa Gonçalves, and L. F. Gladden, "Synthesis and Characterization of the Gallosilicate Mesoporous Molecular Sieve MCM-41," J. Phys. Chem., 100, 390 (1996). Corma, A., M. T. Navarro, and J. Pérez Pariente, "Synthesis of an Ultralarge Pore Titanium Silicate Isomorphous to MCM-41 and its Application as a Catalyst for Selective Oxidation of Hydrocarbons," J. Chem. Soc., Chem. Commun., 147 (1994). Faiberother, F., The Chemistry of Niobium and Tantalum, Elsevier, Amsterdam (1967). Firouzi, A., D. Kumar, L. M. Bull, T. Besier, P. Sieger, Q. Huo, S. A. Walker, J. A. Zasadzinski, C. Glinka, J. Nicol, D. Margolese, G. D. Stucky, and B. F. Chmelka, "Cooperative Organization of Inorganic-Surfactant and Biomimetic Assemblies," Science, 267, 1138 (1995). Fontaine, R., R. Callat, L. Feve, and M. J. Guittet, "Déplacement Chimique ESA Dans la Série Des Oxydes Du Niobium," J. Elect. Spectros., 10, 349 (1977). Gregg, S. K., and K. S. W. Sing, Adsorption, Surface Area and Porosity, Academic Press, London (1982). Hari Prasad Rao, P. R., R. Kumar, A. V. Ramaswamy, and P. Ratnasamy, "Synthesis and Characterization of a Crystalline Vanadium Silicate with MEL Structure," Zeolites, 13, 663 (1993). Huo, Q., D. I. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E. Gier, P. Sieger, A. Firouzi, B. F. Chmelka, F. Schüth, and G. D. Stucky, "Organization of Organic Molecules with Inorganic Molecular Species into Nanocomposite Biphase Arrays," Chem. Mater., 6, 1176 (1994a). Huo, Q., D. I. Margolese, U. Ciesla, P. Feng, T. E. Gier, P. Sieger, R. Leon, P. M. Petroff, F. Schüth, and G. D. Stucky, "Generalized Synthesis of Periodic Surfactant/Inorganic Composite Materials," Nature, 368, 317 (1994b). Huo, Q., R. Leon, P. M. Petroff, and G. D. Stucky, "Mesostructure Design with Gemini Surfactants: Supercage Formation in a Three-Dimensional Hexagonal Array," Science, 268, 1324 (1995). Huo, Q., D. I. Margolese, and G. D. Stucky, "Surfactant Control of Phases in the Synthesis of Mesoporous Silica-Based Materials," Chem. Mater., 8, 1147 (1996). Iler, R. K., The Chemistry of Silica, Wiley, New York, p. 150 (1979). Khushalani, D., A. Kuperman, G. A. Ozin, K. Tanaka, J. Garces, M. M. Olken, and N. Coombs, "Metamorphic Materials: Restructuring Siliceous Mesoporous Materials," Adv. Mater., 7, 842 (1995). Kresge, C. T., M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, "Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template Mechanism," Nature, 359, 710 (1992). Liu, C.-C., X.-K. Ye, and Y. Wu, "Hydroxylation of Phenol by Iron(II)-Phenanthroline/MCM-41 Zeolite," Catal. Lett., 36, 263 (1996). Luan, Z. H., C. F. Cheng, W. Z. Zhou, and J. Klinowski, "Mesoporous Molecular Sieve MCM-41 Containing Framework Aluminum," J. Phys. Chem., 99, 1018 (1995). Mabbs, F. E., and D. Collison, "Electron Paramagnetic Resonance of d Transition Metal Compounds," Stud. Inorg. Chem., 16 (1992). McGuire, G. E., G. K. Schweitzer, and T. A. Carlson, "Study of Core Electron Binding Energies in Some Group IIIa, Vb, and VIb Compounds," Inorg. Chem., 12, 2451 (1973). Morey, M., A. Davidson, H. Eckert, and G. D. Stucky, "Pseudotetrahedral O3/2V=O Centers Immobilized on the Walls of a Mesoporous Cubic MCM-48 Support: Preparation, Characterization and Reactivity toward Water as Investigated by51V NMR and UV-Vis Spectroscopies," Chem. Mater., 8, 486 (1996). Nishimura, M., K. Asakura, and P. Iwasawa, "New SiO2 Supported Niobium Monomer Catalysts for Dehydrogenation of Ethanol," J. Chem. Soc., Chem. Commun., 1660 (1986). Oster, G., and D. P. Riley, "Scattering from Cylindrically Symmetric Systems," Acta Cryst., 5, 272 (1952). Redder, D., "Transition Metal Nuclear Magnetic Resonance," Stud. Inorg. Chem., 13, 45 (1991). Reddy, K. M., I. L. Moudrakouski, and A. Sayari, "Synthesis of Mesoporous Vanadium Silicate Molecular Sieves," J. Chem. Soc., Chem. Commun., 1059 (1994). Sayari, A., "Catalysis by Crystalline Mesoporous Molecular Sieves," Chem. Mater., 8, 1840 (1996). Sayari, A., C. Danumah, I. L. Moudrakouski, A. I. Ratcliffe, J. A. Ripmeester, and K. F. Preston, "Synthesis and Nuclear Magnetic Resonance Study of Boron-Modified MCM-41 Mesoporous Materials," J. Phys. Chem., 99, 16, 373 (1995). Schacht, S., Q. Huo, I. G. Voigt-Martin, G. D. Stucky, and F. Schüth, "Oil-Water Interface Templating of Mesoporous Macroscale Structures," Science, 273, 768 (1996). Schwarz, S., D. R. Corbin, and A. J. Vega, "The Band at 960," Mater. Res. Soc. Sym. Proc., 431, 137 (1996). Simon, D., C. Perrin, and P. Baillif, "Electron Spectrometric Study (ESCA) of Niobium and Its Oxides. Application to Its Oxidation at High Temperature and Low Oxygen Pressure," C. R. Acad. Sci. Paris, 283C, 241 (1976). Stucky, G. D., Q. Huo, A. Firouzi, B. F. Chmelka, S. Schacht, I. G. Voigt-Martin, and F. Schüth, "Directed Synthesis of Organic/Inorganic Composite Structures," Stud. Surf. Sci. Catal., 105, 3 (1996). Tanev, P. T., M. Chibwe, and T. J. Pinnavaia, "Titanium-Containing Mesoporous Molecular Sieves for Catalytic Oxidation of Aromatic Compounds," Nature, 368, 321 (1994). Tanev, P. T., and T. J. Pinnavaia, "A Neutral Templating Route to Mesoporous Molecular Sieves," Science, 267, 865 (1995). Tanev, P. T., and T. J. Pinnavaia, "Mesoporous Silica Molecular Sieves Prepared by Ionic and Neutral Surfactant Templating: A Comparison of Physical Properties," Chem. Mater., 8, 2068 (1996). Vartuli, J. C., K. D. Schmitt, C. T. Kresge, W. J. Roth, M. E. Leonowicz, S. B. McCullen, S. D. Hellring, J. S. Beck, J. L. Schlenker, D. H. Olsen, and E. W. Sheppard, "Effect of Surfactant/Silica Molar Ratios on the Formation of Mesoporous Molecular Sieves: Inorganic Mimicry of Surfactant Liquid-Crystal Phases and Mechanistic Implications," Chem. Mater., 6, 2317 (1994). Wagner, C. D., W. M. Riggs, L. E. Davis, J. F. Moulder, and G. E. Muilenberg, " Handbook of X-Ray Photoelectron Spectroscopy," Physical Electronics Div., Perkin-Elmer Corp., Eden Prairie, MN (1992). Weissman, J. G., E. I. Ko, and P. Wynblatt, "Study of the Morphology and Structure of Niobium-Silica Surface Oxide Using Model Thin Films," J. Catal., 108, 383 (1987). Wu, C.-G., and T. Bein, "Polyaniline Wires in Oxidant-Containing Mesoporous Channel Hosts," Chem. Mater., 6, 1109 (1994). Yang, H., A. Kuperman, N. Coombs, S. Mamiche-Afara, and G. A. Ozin, "Synthesis of Oriented Films of Mesoporous Silica on Mica," Science, 379, 703 (1996). Ying, J. Y., J. B. Benziger, and A. Navrotsky, "Structural Evolution of Alkoxide Silica Gels to Glass: Effect of Catalyst pH," J. Amer. Ceram. Soc., 76, 2571 (1993). Yuan, Z. Y., S. Q. Liu, T. H. Chen, Z. J. Wang, and H. X. Li, "Synthesis of Iron-Containing MCM-41," J. Chem. Soc., Chem. Commun., 973 (1995). Zhang, L., T. Sun, and J. Y. Ying, "A Rationally-Designed Oxidation Catalyst: Functionalized Metalloporphyrin Encapsulated in a Transition Metal-Doped Mesoporous Silica," Catal. Lett., submitted (1997). Zhang, W., J. Wang, P. T. Tanev, and T. J. Pinnavaia, "Catalytic Hydroxylation of Benzene over Transition-Metal Substituted Hexagonal Mesoporous Silicas," Chem. Commun., 979 (1996). Zhao, D., and D. Goldfarb, "Synthesis of Manganosilicates: MnMCM-41, Mn-MCM-48 and Mn-MCM-L," J. Chem. Soc., Chem. Commun., 875 (1995). Zhao, X. S., G. Q. Lu, and J. M. Graeme, "Advances in Mesoporous Molecular Sieve MCM-41," Ind. Eng. Chem. Res., 35, 2075 (1996). Ziolek, M., I. Nowak, and J. C. Lavalley, "Acidity Study of Nb-Containing MCM-41 Mesoporous Materials: Comparison with that of AI-MCM-41," Catal. Lett., 45, 259 (1997). Citing Literature Volume43, IssueS11Supplement: Special Ceramics Processing Issue1997Pages 2793-2801 ReferencesRelatedInformation
Referência(s)