Functional anatomy of the basal ganglia
2002; Wiley; Volume: 17; Issue: S3 Linguagem: Inglês
10.1002/mds.10138
ISSN1531-8257
Autores Tópico(s)Neural dynamics and brain function
ResumoMovement DisordersVolume 17, Issue S3 p. S15-S21 Functional anatomy of the basal ganglia J. Yelnik MD, Corresponding Author J. Yelnik MD [email protected] Institut National de la Santé et de la Recherche Médicale U289, Hôpital de la Salpêtrière, Paris, FranceINSERM U289, Hôpital de la Salpêtrière, 47, Blvd. de l'Hôpital, 75013, Paris, FranceSearch for more papers by this author J. Yelnik MD, Corresponding Author J. Yelnik MD [email protected] Institut National de la Santé et de la Recherche Médicale U289, Hôpital de la Salpêtrière, Paris, FranceINSERM U289, Hôpital de la Salpêtrière, 47, Blvd. de l'Hôpital, 75013, Paris, FranceSearch for more papers by this author First published: 28 March 2002 https://doi.org/10.1002/mds.10138Citations: 160Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Abstract Four organizational levels of the basal ganglia that could be particularly determinant in terms of functional properties are reviewed: (1) macroscopic anatomy, which is characterized by a dramatic decrease of cerebral tissue volume from the cerebral cortex to the deepest portions of the basal ganglia; (2) connectivity, which consists of both complex loops and a partition into three territories, sensorimotor, associative, and limbic (which process motor, cognitive, and emotional information, respectively); (3) neuronal morphology, characterized by a dramatic numeric and geometric convergence of striatal neurons onto pallidonigral neurons; and (4) dopaminergic innervation of the basal ganglia, which is organized as a dual system that is supposed to have opposite effects on the activity of the system. Current models of the basal ganglia are discussed. © 2002 Movement Disorder Society REFERENCES 1O'Rahilly R, Muller F. The embryonic human brain. New York: Wiley-Liss; 1994. 2Yelnik J, Percheron G. Subthalamic neurons in primates: a quantitative and comparative analysis. Neuroscience 1979; 4: 1717– 1743. 3Kemp JM, Powell TPS. The cortico-striate projection in the monkey. Brain 1970; 93: 525– 546. 4Russchen FT, Bakst I, Amaral DG, Price JL. The amygdalostriatal projections in the monkey. An anterograde tracing study. Brain Res 1985; 329: 241– 257. 5Yelnik J, François C, Percheron G, Tandé D. A spatial and quantitative study of the striatopallidal connection in the monkey. Neuroreport 1996; 7: 985– 988. 6Hazrati LN, Parent A. The striatopallidal projection displays a high degree of anatomical specificity in the primate. Brain Res 1992; 592: 213– 227. 7Parent A, Smith Y, Filion M, Dumas J. Distinct afferents to internal and external pallidal segments in the squirrel monkey. Neurosci Lett 1989; 96: 140– 144. 8Chang HT, Wilson CJ, Kitai ST. Single neostriatal efferent axons in the globus pallidus: a light and electron microscopic study. Science 1981; 213: 915– 918. 9Parent A, Hazrati LN. Multiple striatal representation in primate substantia nigra. J Comp Neurol 1994; 344: 305– 320. 10Bolam JP, Powell JF, Totterdell S, Smith AD. The proportion of neurons in the rat neostriatum that project to the substantia nigra demonstrated using horseradish peroxidase conjugated with wheat germ agglutinin. Brain Res 1981; 220: 339– 343. 11Lynd-Balta E, Haber SN. Primate striatonigral projections: a comparison of the sensorimotor-related striatum and the ventral striatum. J Comp Neurol 1994; 345: 562– 578. 12Parent A, De Bellefeuille L. Organization of efferent projections from the internal segment of globus pallidus in primate as revealed by fluorescence retrograde labeling method. Brain Res 1982; 245: 201– 213. 13DeVito JL, Anderson ME. An autoradiographic study of the efferent connections of the globus pallidus in Macaca mulatta. Exp Brain Res 1982; 46: 107– 117. 14Parent A, Mackey A, Smith Y, Boucher R. The output organization of the substantia nigra in primate as revealed by a retrograde double labeling method. Brain Res Bull 1983; 10: 529– 537. 15Barbas H, Haswell H, Dermon CR. Diverse thalamic projections to the prefrontal cortex in the rhesus monkey. J Comp Neurol 1991; 313: 65– 94. 16Inase M, Tokuno H, Nambu A, Akazawa T, Takada M. Origin of thalamocortical projections to the presupplementary motor area (pre-SMA) in the macaque monkey. Neurosci Res 1996; 25: 217– 227. 17Ilinsky IA, Jouandet ML, Goldman-Rakic PS. Organisation of the nigrothalamocortical system in the rhesus monkey. J Comp Neurol 1985; 236: 315– 330. 18Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci 1989; 12: 366– 375. 19Hornykiewicz O. Dopamine in the basal ganglia. Its role and therapeutic implications (including the clinical use of L-dopa). Br Med Bull 1973; 29: 172– 178. 20Hedreen JC, DeLong MR. Organization of striatopallidal, striatonigral, and nigrostriatal projections in the macaque. J Comp Neurol 1991; 304: 569– 595. 21Jan C, François C, Yelnik J, Tandé D, Agid Y, Hirsch EC. Dopaminergic innervation of the pallidum in the normal state, MPTP-treated monkeys and Parkinsonian patients. Eur J Neurosci 2000; 12: 4525– 4535. 22Hassani OK, François C, Yelnik J, Féger J. Evidence for a dopaminergic innervation of the subthalamic nucleus in the rat. Brain Res 1997; 749: 88– 94. 23Hedreen JC. Tyrosine hydroxylase-immunoreactive elements in the human globus pallidus and subthalamic nucleus. J Comp Neurol 1999; 409: 400– 410. 24Fran?ois C, Savy C, Jan C, Tand? D, Hirsch EC, Yelnik J. Dopaminergic innervation of the subthalamic nucleus in the normal state, in MPTP-treated monkeys and in Parkinson's disease patients. J Comp Neurol. 2000; 425: 121– 129. 25DeLong MR. Primate models of movement disorders of basal ganglia origin. Trends Neurosci 1990; 13: 281– 285. 26Wichmann T, DeLong MR. Pathophysiology of parkinsonian motor abnormalities. Adv Neurol 1993; 60: 53– 61. 27Hirsch EC, Perier C, Orieux G, Francois C, Feger J, Yelnik J, Vila M, Levy R, Tolosa ES, Marin C, Trinidad HM, Obeso JA, Agid Y. Metabolic effects of nigrostriatal denervation in basal ganglia. Trends Neurosci. 2000; 23: S78– S85. 28Fénelon G, Percheron G, Yelnik J. Topographic distribution of pallidal neurons projecting to the thalamus in macaques. Brain Res 1990; 520: 27– 35. 29François C, Percheron G, Parent A, Sadikot AF, Fénelon G, Yelnik J. Topography of the projection from the central complex of the thalamus to the sensorimotor striatal territory in monkeys. J Comp Neurol 1991; 305: 17– 34. 30Sadikot AD, Parent A, Smith Y, Bolam JP. Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: a light and electron microscopic study of the thalamostriatal projection in relation to striatal heterogeneity. J Comp Neurol 1992; 320: 228– 242. 31Sadikot AF, Parent A, François C. Efferent connections of the centromedian and parafascicular thalamic nuclei in squirrel monkey: I. A PHA-L study of subcortical projections. J Comp Neurol 1992; 315: 137– 159. 32Lapper SR, Bolam JP. Input from the frontal cortex and the parafascicular nucleus to cholinergic interneurons in the dorsal striatum of the rat. Neuroscience 1992; 51: 533– 545. 33Nauta WJH, Mehler WR. Projections of the lentiform nucleus in the monkey. Brain Res 1966; 1: 3– 42. 34Vandewalle V, van der Linden C, Groenewegen HJ, Caemaert J. Stereotactic treatment of Gilles de la Tourette syndrome by high frequency stimulation of thalamus [letter]. Lancet 1999; 353: 724. 35Lavoie B, Parent A. Pedunculopontine nucleus in the squirrel monkey: cholinergic and glutamatergic projections to the substantia nigra. J Comp Neurol 1994; 344: 232– 241. 36Lavoie B, Parent A. Pedunculopontine nucleus in the squirrel monkey: distribution of cholinergic and monoaminergic neurons in the mesopontine tegmentum with evidence for the presence of glutamate in cholinergic neurons. J Comp Neurol 1994; 344: 190– 209. 37Lavoie B, Parent A. Pedunculopontine nucleus in the squirrel monkey: projections to the basal ganglia as revealed by anterograde tract-tracing methods. J Comp Neurol 1994; 344: 210– 231. 38Künzle H. Bilateral projections from precentral motor cortex to the putamen and other parts of the basal ganglia. An autoradiographic study in Macaca fascicularis. Brain Res 1975; 88: 195– 209. 39Künzle H. Projections from the primary somatosensory cortex to basal ganglia and thalamus in the monkey. Exp Brain Res 1977; 30: 481– 492. 40Künzle H. An autoradiographic analysis of the efferent connections from premotor and adjacent prefrontal regions (areas 6 and 9) in Macaca fascicularis. Brain Behav Evol 1978; 15: 185– 234. 41Percheron G, Yelnik J, François C. A Golgi analysis of the primate globus pallidus. III. Spatial organization of the striato-pallidal complex. J Comp Neurol 1984; 227: 214– 227. 42Selemon LD, Goldman-Rakic PS. Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J Neurosci 1985; 5: 776– 794. 43Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 1986; 9: 357– 381. 44Alexander GE, Crutcher MD. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 1990; 13: 266– 271. 45Goldman-Rakic PS. Topography of cognition: parallel distributed networks in primate association cortex. Annu Rev Neurosci 1988; 11: 137– 156. 46Parent A. Extrinsic connections of the basal ganglia. Trends Neurosci 1990; 13: 254– 258. 47Parent A, Hazrati LN. Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Rev 1995; 20: 91– 127. 48DeLong MR. The basal ganglia. In: JH Kandel, JH Schwartz, MJ Thomas, editors. Principles of neural science. New York: McGraw-Hill; 2000. p 853– 867. 49Hoover JE, Strick PL. Multiple output channels in the basal ganglia. Science 1993; 259: 819– 821. 50Yelnik J, Percheron G, François C. A Golgi analysis of the primate globus pallidus. II. Quantitative morphology and spatial orientation of dendritic arborizations. J Comp Neurol 1984; 227: 200– 213. 51Percheron G, Filion M. Parallel processing in the basal ganglia: up to a point. Trends Neurosci 1991; 14: 55– 56. 52Yoshida SI, Nambu A, Jinnai K. The distribution of the globus pallidus neurons with input from various cortical areas in the monkeys. Brain Res 1993; 611: 170– 174. 53Kimura M, Kato M, Shimazaki H, Watanabe K, Matsumoto N. Neural information transferred from the Putamen to the globus pallidus during learned movement in the monkey. J Neurophysiol 1996; 76: 3771– 3786. 54Flaherty AW, Graybiel AM. Two input systems for body representations in the primate striatal matrix: experimental evidence in the squirrel monkey. J Neurosci 1993; 13: 1120– 1137. 55Joel D, Weiner I. The organization of the basal ganglia-thalamocortical circuits: open interconnected rather than closed segregated. Neuroscience 1994; 63: 363– 379. 56Joel D. Open interconnected model of basal gangliathalamocortical circuitry and its relevance to the clinical syndrome of Huntington's disease. Mov Disord 2001; 16: 407– 423. 57Kemp JM, Powell TPS. The structure of the caudate nucleus of the cat: light and electron microscopy. Philos Trans R Soc Lond B Biol Sci 1971; 262: 383– 401. 58Chang HT, Wilson CJ, Kitai ST. A Golgi study of rat neostriatal neurons: light microscopic analysis. J Comp Neurol 1982; 208: 107– 126. 59Graveland GA, Williams RS, DiFiglia M. A Golgi study of the human neostriatum: neurons and afferent fibers. J Comp Neurol 1985; 234: 317– 333. 60Yelnik J, François C, Percheron G, Tandé D. Morphological taxonomy of the neurons of the primate striatum. J Comp Neurol 1991; 313: 273– 294. 61Braak H, Braak E. Neuronal types in the striatum of man. Cell Tissue Res 1982; 227: 319– 342. 62Freund TF, Powell JF, Smith AD. Tyrosine hydroxylase-immunoreactive boutons in synaptic contacts with identified striatonigral neurons, with particular reference to dendritic spines. Neuroscience 1984; 13: 1189– 1216. 63Bouyer JJ, Park DH, Joh TH, Pickel VM. Chemical and structural analysis of the relation between cortical inputs and tyrosine hydroxylase-containing terminals in rat neostriatum. Brain Res 1984; 302: 267– 275. 64Smith AD, Bolam JP. The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones. Trends Neurosci 1990; 13: 259– 265. 65Ribak CE, Vaughn JE, Roberts E. The GABA neurons and their axon terminals in rat corpus striatum as demonstrated by GAD immunocytochemistry. J Comp Neurol 1979; 187: 261– 284. 66Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJJ, Sibley DR. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 1990; 250: 1429– 1432. 67Bolam JP, Wainer BH, Smith AD. Characterization of cholinergic neurons in the rat neostriatum. A combination of choline acetyltransferase immunocytochemistry, Golgi-impregnation and electron microscopy. Neuroscience 1984; 12: 711– 718. 68Levey AI, Wainer BH, Mufson EJ, Mesulam MM. Co-localization of acetylcholinesterase and choline acetyltransferase in the rat cerebrum. Neuroscience 1983; 9: 9– 22. 69DiFiglia M, Carey J. Large neurons in the primate neostriatum examined with the combined Golgi-electron microscopic method. J Comp Neurol 1986; 244: 36– 52. 70Phelps PE, Houser CR, Vaughn JE. Immunocytochemical localization of choline acetyltransferase within the rat neostriatum: a correlated light and electron microscopic study of cholinergic neurons and synapses. J Comp Neurol 1985; 238: 286– 307. 71Kimura M, Rajkowski J, Evarts E. Tonically discharging putamen neurons exhibit set-dependent responses. Proc Natl Acad Sci U S A 1984; 81: 4998– 5001. 72Apicella P, Scarnati E, Schultz W. Tonically discharging neurons of monkey striatum respond to preparatory and rewarding stimuli. Exp Brain Res 1991; 84: 672– 675. 73François C, Percheron G, Yelnik J, Heyner S. A Golgi analysis of the primate globus pallidus. I. Inconstant processes of large neurons. Other neuronal types, afferent axons. J Comp Neurol 1984; 227: 182– 199. 74DiFiglia M, Pasik P, Pasik T. A Golgi and ultrastructural study of the monkey globus pallidus. J Comp Neurol 1982; 212: 53– 75. 75Penney JB, Young AB. GABA as the pallidothalamic neurotransmitter: implications for basal ganglia function. Brain Res 1981; 207: 195– 199. 76Yelnik J, François C, Percheron G, Heyner S. Golgi study of the primate substantia nigra. I. Quantitative morphology and typology of nigral neurons. J Comp Neurol 1987; 265: 455– 472. 77François C, Yelnik J, Percheron G. Golgi study of the primate substantia nigra. II. Spatial organization of dendritic arborizations in relation to the cytoarchitectonic boundaries and to the striatonigral bundle. J Comp Neurol 1987; 265: 473– 493. 78Filion M, Tremblay L. Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism. Brain Res 1991; 547: 142– 151. 79Rinvik E, Ottersen OP. Terminals of subthalamonigral fibres are enriched with glutamate-like immunoreactivity: an electron microscopic, immunogold analysis in the cat. J Chem Neuroanat 1993; 6: 19– 30. 80Hammond C, Deniau JM, Rizk A, Féger J. Electrophysiological demonstration of an excitatory subthalamonigral pathway in the rat. Brain Res 1978; 151: 235– 244. 81Hammond C, Yelnik J. Intracellular labelling of rat subthalamic neurones with horseradish peroxidase: computer analysis of dendrites and characterization of axon arborization. Neuroscience 1983; 8: 781– 790. 82Mannen H. "Noyau fermé" et "noyau ouvert." Arch Ital Biol 1960; 98: 333– 350. 83Olson L, Seiger A, Fuxe K. Heterogeneity of striatal and limbic dopamine innervation: highly fluorescent islands in developing and adult rats. Brain Res 1972; 44: 283– 288. 84Mensah PL. The internal organization of the mouse caudate nucleus: evidence for cell clustering and regional variation. Brain Res 1977; 137: 53– 66. 85Graybiel AM, Ragsdale CW. Histochemically distinct compartments in the striatum of human, monkey and cat demonstrated by acetylthiocholinesterase staining. Proc Natl Acad Sci U S A 1978; 75: 5723– 5726. 86Graybiel AM. Neuropeptides in the basal ganglia. In: JB Martin, JD Barchas, editors. Neuropeptides in neurologic and psychiatric disease. New York: Raven Press; 1986. p 135– 161. 87Féger J, Crossman AR. Identification of different subpopulations of neostriatal neurones projecting to globus pallidus or substantia nigra in the monkey: a retrograde fluorescence double-labelling study. Neurosci Lett 1984; 49: 7– 12. 88Beckstead RM, Cruz CJ. Striatal axons to the globus pallidus, entopeduncular nucleus and substantia nigra come mainly from separate cell populations in cat. Neuroscience 1986; 19: 147– 158. 89Parent A, Bouchard C, Smith Y. The striatopallidal and striatonigral projections: two distinct fiber systems in primate. Brain Res 1984; 303: 385– 390. 90Pickel VM, Beckley SC, Joh TH, Reis DJ. Ultrastructural immunocytochemical localization of tyrosine hydroxylase in neostriatum. Brain Res 1981; 225: 373– 385. 91Lehmann J, Langer SZ. The striatal cholinergic interneuron: synaptic target of dopaminergic terminals? Neuroscience 1983; 10: 1105– 1120. 92Bannon MJ, Elliott PJ, Bunney EB. Striatal tachykinin biosynthesis: regulation of mRNA and peptide levels by dopamine agonists and antagonists. Brain Res 1987; 427: 31– 37. 93Bouras C, Schulz P, Constantinidis J, Tissot R. Differential effects of acute and chronic administration of haloperidol on substance P and enkephalins in diverse rat brain areas. Neuropsychobiology 1986; 16: 169– 174. 94Li SJ, Sivam SP, McGinty JF, Huang YS, Hong JS. Dopaminergic regulation of tachykinin metabolism in the striatonigral pathway. J Pharmacol Exp Ther 1987; 243: 792– 798. 95Tremblay L, Filion M, Bédard P. Responses of pallidal neurons to striatal stimulations in monkeys with MPTP-induced parkinsonism. Brain Res 1989; 498: 17– 33. 96Pan HS, Walters JR. Unilateral lesion of the nigrostriatal pathway decreases the firing rate and alters the firing pattern of globus pallidus neurons in the rat. Synapse 1988; 2: 650– 656. 97Waters CM, Peck R, Rossor M, Reynolds GP, Hunt SP. Immunocytochemical studies on the basal ganglia and substantia nigra in Parkinson's disease and Huntington's chorea. Neuroscience 1988; 25: 419– 438. 98Mink JW, Thach WT. Basal ganglia motor control. III. Pallidal ablation: normal reaction time, muscle cocontraction, and slow movement. J Neurophysiol 1991; 65: 330– 351. 99Mink JW, Thach WT. Basal ganglia intrinsic circuits and their role in behavior. Curr Opin Neurobiol 1993; 3: 950– 957. 100Albin RL, Young AB, Penney JB. The functional anatomy of disorders of the basal ganglia. Trends Neurosci 1995; 18: 63– 64. 101Chesselet MF, Delfs JM. Basal ganglia and movement disorders: an update. Trends Neurosci 1996; 19: 417– 422. 102Levy R, Hazrati LN, Herrero MT, Vila M, Hassani OK, Mouroux M, Ruberg M, Asensi H, Agid Y, Féger J, Obeso JA, Parent A, Hirsch EC. Re-evaluation of the functional anatomy of the basal ganglia in normal and parkinsonian states. Neuroscience 1997; 76: 335– 343. 103Aizman O, Brismar H, Uhlen P, Zettergren E, Levey AI, Forssberg H, Greengard P, Aperia A. Anatomical and physiological evidence for D-1 and D-2 dopamine receptor colocalization in neostriatal neurons. Nature Neurosci 2000; 3: 226– 230. 104Parent A, Charara A, Pinault D. Single striatofugal axons arborizing in both pallidal segments and in the substantia nigra in primates. Brain Res 1995; 698: 280– 284. 105Vila M, Levy R, Herrero MT, Ruberg M, Faucheux B, Obeso JA, Agid Y, Hirsch EC. Consequences of nigrostriatal denervation on the functioning of the basal ganglia in human and nonhuman primates: an in situ hybridization study of cytochrome oxidase subunit I mRNA. J Neurosci 1997; 17: 765– 773. 106Herrero MT, Levy R, Ruberg M, Luquin MR, Villares J, Guillen J, Faucheux B, Javoy-Agid F, Guridi J, Agid Y, Obeso JA, Hirsch EC. Consequences of nigrostriatal denervation and L-DOPA therapy on the expression of glutamic acid decarboxylase (GAD) messengers RNA in the pallidum. Neurology 1996; 47: 219– 224. 107Smith Y, Wichmann T, DeLong MR. Synaptic innervation of neurones in the internal pallidal segment by the subthalamic nucleus and the external pallidum in monkeys. J Comp Neurol 1994; 343: 297– 318. 108Orieux G, François C, Féger J, Yelnik J, Vila M, Ruberg M, Agid Y, Hirsch EC. Metabolic activity of excitatory parafascicular and pedunculopontine inputs to the subthalamic nucleus in a rat model of Parkinson's disease. Neuroscience 2000; 97: 79– 88. 109Obeso JA, Rodriguez-Oroz MC, Rodriguez M, Lanciego JL, Artieda J, Gonzalo N, Olanow CW. Pathophysiology of the basal ganglia in Parkinson's disease. Trends Neurosci 2000; 23: S8– S19. 110Graybiel AM, Canales JJ, Capper-Loup C. Levodopa-induced dyskinesias and dopamine-dependent stereotypies: a new hypothesis. Trends Neurosci 2000; 23: S71– S77. 111Pullen AH. A structured program in basic for cell morphometry: its application to the spinal motoneurone. J Neurosci Methods 1984; 12: 155– 178. Citing Literature Volume17, IssueS3Supplement: Deep Brain Stimulation for Movement DisordersMarch/April 2002Pages S15-S21 ReferencesRelatedInformation
Referência(s)