Artigo Acesso aberto Revisado por pares

The soluble guanylate cyclase activator cinaciguat prevents cardiac dysfunction in a rat model of type-1 diabetes mellitus

2015; BioMed Central; Volume: 14; Issue: 1 Linguagem: Inglês

10.1186/s12933-015-0309-x

ISSN

1475-2840

Autores

Csaba Mátyás, Balázs Tamás Németh, Attila Oláh, László Hidi, Ede Birtalan, Dalma Kellermayer, Mihály Ruppert, Sevil Korkmaz‐Icöz, Gábor Kökény, E Horváth, Gábor Szabó, Béla Merkely, Tamás Radovits,

Tópico(s)

Apelin-related biomedical research

Resumo

Diabetes mellitus (DM) leads to the development of diabetic cardiomyopathy, which is associated with altered nitric oxide (NO)--soluble guanylate cyclase (sGC)--cyclic guanosine monophosphate (cGMP) signalling. Cardioprotective effects of elevated intracellular cGMP-levels have been described in different heart diseases. In the current study we aimed at investigating the effects of pharmacological activation of sGC in diabetic cardiomyopathy.Type-1 DM was induced in rats by streptozotocin. Animals were treated either with the sGC activator cinaciguat (10 mg/kg/day) or with placebo orally for 8 weeks. Left ventricular (LV) pressure-volume (P-V) analysis was used to assess cardiac performance. Additionally, gene expression (qRT-PCR) and protein expression analysis (western blot) were performed. Cardiac structure, markers of fibrotic remodelling and DNA damage were examined by histology, immunohistochemistry and TUNEL assay, respectively.DM was associated with deteriorated cGMP signalling in the myocardium (elevated phosphodiesterase-5 expression, lower cGMP-level and impaired PKG activity). Cardiomyocyte hypertrophy, fibrotic remodelling and DNA fragmentation were present in DM that was associated with impaired LV contractility (preload recruitable stroke work (PRSW): 49.5 ± 3.3 vs. 83.0 ± 5.5 mmHg, P < 0.05) and diastolic function (time constant of LV pressure decay (Tau): 17.3 ± 0.8 vs. 10.3 ± 0.3 ms, P < 0.05). Cinaciguat treatment effectively prevented DM related molecular, histological alterations and significantly improved systolic (PRSW: 66.8 ± 3.6 mmHg) and diastolic (Tau: 14.9 ± 0.6 ms) function.Cinaciguat prevented structural, molecular alterations and improved cardiac performance of the diabetic heart. Pharmacological activation of sGC might represent a new therapy approach for diabetic cardiomyopathy.

Referência(s)