Sequential Pattern Mining for Situation and Behavior Prediction in Simulated Robotic Soccer
2006; Springer Science+Business Media; Linguagem: Inglês
10.1007/11780519_11
ISSN1611-3349
AutoresAndreas D. Lattner, Andrea Miene, Ubbo Visser, Otthein Herzog,
Tópico(s)Anomaly Detection Techniques and Applications
ResumoAgents in dynamic environments have to deal with world representations that change over time. In order to allow agents to act autonomously and to make their decisions on a solid basis an interpretation of the current scene is necessary. If intentions of other agents or events that are likely to happen in the future can be recognized the agent's performance can be improved as it can adapt the behavior to the situation. In this work we present an approach which applies unsupervised symbolic learning off-line to a qualitative abstraction in order to create frequent patterns in dynamic scenes. These patterns can be later applied during runtime in order to predict future situations and behaviors. The pattern mining approach was applied to two games of the 2D RoboCup simulation league.
Referência(s)