Artigo Acesso aberto Revisado por pares

Studies on galactose oxidase active site model complexes: effects of ring substituents on Cu(II)-phenoxyl radical formation

2002; Elsevier BV; Volume: 331; Issue: 1 Linguagem: Inglês

10.1016/s0020-1693(01)00781-2

ISSN

1873-3255

Autores

Yuichi Shimazaki, S. Huth, Shun Hirota, Osamu Yamauchi,

Tópico(s)

Magnetism in coordination complexes

Resumo

Copper(II) complexes of new N3O- and N2O2-donor tripodal ligands bearing one or two o-substituted phenol moieties have been synthesized as models for the galactose oxidase active site. The complexes of 2-[N-(1-methyl-2′-imidazolylmethyl)-N-(6″-methyl-2″-pyridylmethyl)-aminomethyl)]-4-methyl-6-methylthiophenol (MeSL), [Cu(MeSL)Cl], and N-(6-methyl-2-pyridylmethyl)-N,N-bis(2′-hydroxy-3′,5′-di-tert-butylbenzyl)amine (t-buL2mepy), [Cu(t-buL2mepy)(H2O)], have been revealed by X-ray structural analysis to have a square-pyramidal structure with one and two phenolate oxygens in the basal plane, respectively. [Cu(MeSL)Cl] was converted into a Cu(II)-o-methylthiophenoxyl radical species by electrochemical or Ce(IV) oxidation. An o-methoxyphenoxyl radical in a similar complex was considerably more stable than the 2,4-di(tert-butyl)phenoxyl radical. While t-buL2mepy reacted with Cu(ClO4)2 to give [Cu(t-buL2mepy)(H2O)] without disproportionation, an N2O2-donor ligand containing an o-methoxyphenol, a 2,4-di(tert-butyl)phenol, and an N-methylimidazole moiety gave a phenoxyl radical complex exhibiting the characteristic absorption peak at 478 nm as a reddish powder by the reaction with Cu(ClO4)2 as a result of spontaneous disproportionation. It exhibited a quasi-reversible redox wave at E1/2=0.34 V (vs. Ag/AgCl) in CH3CN, which is lower than the potentials of the copper complexes of various N3O-donor ligands, and oxidized ethanol to acetaldehyde with a low turnover number.

Referência(s)
Altmetric
PlumX