Artigo Revisado por pares

A modern Bayesian look at the multi‐armed bandit

2010; Wiley; Volume: 26; Issue: 6 Linguagem: Inglês

10.1002/asmb.874

ISSN

1526-4025

Autores

Steven L. Scott,

Tópico(s)

Gaussian Processes and Bayesian Inference

Resumo

Abstract A multi‐armed bandit is an experiment with the goal of accumulating rewards from a payoff distribution with unknown parameters that are to be learned sequentially. This article describes a heuristic for managing multi‐armed bandits called randomized probability matching , which randomly allocates observations to arms according the Bayesian posterior probability that each arm is optimal. Advances in Bayesian computation have made randomized probability matching easy to apply to virtually any payoff distribution. This flexibility frees the experimenter to work with payoff distributions that correspond to certain classical experimental designs that have the potential to outperform methods that are ‘optimal’ in simpler contexts. I summarize the relationships between randomized probability matching and several related heuristics that have been used in the reinforcement learning literature. Copyright © 2010 John Wiley & Sons, Ltd.

Referência(s)