Artigo Acesso aberto Revisado por pares

Concurrent loss of Ezh2 and Tet2 cooperates in the pathogenesis of myelodysplastic disorders

2013; Rockefeller University Press; Volume: 210; Issue: 12 Linguagem: Inglês

10.1084/jem.20131144

ISSN

1540-9538

Autores

Tomoya Muto, Goro Sashida, Motohiko Oshima, George Wendt, Makiko Mochizuki‐Kashio, Yasunobu Nagata, Masashi Sanada, Satoru Miyagi, Atsunori Saraya, Asuka Kamio, Genta Nagae, Chiaki Nakaseko, Koutaro Yokote, Kazuya Shimoda, Haruhiko Koseki, Yutaka Suzuki, Sumio Sugano, Hiroyuki Aburatani, Seishi Ogawa, Atsushi Iwama,

Tópico(s)

Myeloproliferative Neoplasms: Diagnosis and Treatment

Resumo

Polycomb group (PcG) proteins are essential regulators of hematopoietic stem cells. Recent extensive mutation analyses of the myeloid malignancies have revealed that inactivating somatic mutations in PcG genes such as EZH2 and ASXL1 occur frequently in patients with myelodysplastic disorders including myelodysplastic syndromes (MDSs) and MDS/myeloproliferative neoplasm (MPN) overlap disorders (MDS/MPN). In our patient cohort, EZH2 mutations were also found and often coincided with tet methylcytosine dioxygenase 2 (TET2) mutations. Consistent with these findings, deletion of Ezh2 alone was enough to induce MDS/MPN-like diseases in mice. Furthermore, concurrent depletion of Ezh2 and Tet2 established more advanced myelodysplasia and markedly accelerated the development of myelodysplastic disorders including both MDS and MDS/MPN. Comprehensive genome-wide analyses in hematopoietic progenitor cells revealed that upon deletion of Ezh2, key developmental regulator genes were kept transcriptionally repressed, suggesting compensation by Ezh1, whereas a cohort of oncogenic direct and indirect polycomb targets became derepressed. Our findings provide the first evidence of the tumor suppressor function of EZH2 in myeloid malignancies and highlight the cooperative effect of concurrent gene mutations in the pathogenesis of myelodysplastic disorders.

Referência(s)