COVERINGS AND PACKINGS BY SEQUENCES OF CONVEX SETS
1985; Wiley; Volume: 440; Issue: 1 Linguagem: Inglês
10.1111/j.1749-6632.1985.tb14559.x
ISSN1749-6632
Autores Tópico(s)Optimization and Packing Problems
ResumoAnnals of the New York Academy of SciencesVolume 440, Issue 1 p. 262-278 COVERINGS AND PACKINGS BY SEQUENCES OF CONVEX SETS† H. Groemer, H. Groemer Department of Mathematics The University of Arizona Tucson, Arizona 85721Search for more papers by this author H. Groemer, H. Groemer Department of Mathematics The University of Arizona Tucson, Arizona 85721Search for more papers by this author First published: May 1985 https://doi.org/10.1111/j.1749-6632.1985.tb14559.xCitations: 10 † aSupported by National Science Foundation Research Grants MCS 8001578 and MCS 8300825. AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat REFERENCES. 1 Alexander, R. 1968. A problem about lines and ovals. Amer. Math. Monthly 75: 484–487. 2 Bang, Th. 1950. On covering by parallel-strips. Mat. Tidsskr. B 1950: 49–53. 3 Bang, Th. 1951. A solution of the "plank problem". Proc. Amer. Math. Soc. 2: 990–993. 4 Bang, Th. 1954. Some remarks on the union of convex bodies. In Proceedings, Tolfte Skandinaviska Matematikerkongressen, Lund, 1953. Pp. 5–11. Lunds Universitets Matematiska Institution. 5 Bielecki, A. & K. Radziszewski. 1954. Sur les parallelépipèdes inscrits dans les corps convexes. Ann. Univ. Mariae Curie-Sklodowska Sect. A 8: 101–103. 6 Bognár, N. 1961. On W. Fenchel's solution of the plank problem. Acta Math. Acad. Sci. Hungar. 12: 269–270. 7 Chakerian, G. D. 1975. Covering space with convex bodies. In The Geometry of Metric and Linear Spaces (Michigan, 1974). L. M. Kelly, Ed.: 187–193. Lecture Notes in Mathematics No. 490. Springer-Verlag. West Berlin , FRG . 8 Chakerian, G. D. & H. Groemer. 1974. On classes of convex sets that permit plane coverings. Israel J. Math. 19: 305–311. 9 Chakerian, G. D. & H. Groemer. 1978. On coverings of Euclidean space by convex sets. Pacific J. Math. 75: 77–86. 10 Erdös, P. & R. L. Graham. 1975. On packing squares with equal squares. J. Combin. Theory Ser. A 19: 119–123. 11 Fejes TÓTH, G. 1983. New results in the theory of packing and covering. In Convexity and Its Applications. P. M. Gruber & J. M. Wills, Eds.: 318–359. Birkhäuser Verlag. Basel , Switzerland . 12 Fejes TÓTH, L. 1950. Covering with dismembered discs. Proc. Amer. Math. Soc. 1: 806–812. 13 Fejes TÓTH, L. 1972. Lagerungen in der Ebene, auf der Kugel und im Raum. 2. Auflage. Springer-Verlag. West Berlin , FRG . 14 Fejes TÓTH, L. 1974. Remarks on the dual of Tarski's plank problem. Mat. Lapok 25: 13–20. (In Hungarian with an English summary.). 15 Fenchel, W. 1951. On Th. Bang's solution of the plank problem. Mat. Tidsskr. B 1951: 49–51. 16 GÖBEL, F. 1979. Geometrical packing and covering problems. In Packing and Covering in Combinatorics. A. Schrijver, Ed.: 179–199. Mathematical Centre Tracts 106. Mathematisch Centrum. Amsterdam , The Netherlands . 17 Groemer, H. 1976. On a covering property of convex sets. Proc. Amer. Math. Soc. 59: 346–352. 18 Groemer, H. 1976. Some covering and packing problems. Amer. Math. Monthly 83: 726–727. 19 Groemer, H. 1979. Space coverings by translates of convex sets. Pacific J. Math. 82: 379–386. 20 Groemer, H. 1980. On finite classes of convex sets that permit space coverings. Amer. Math. Monthly 84: 286–288. 21 Groemer, H. 1981. On coverings of plane convex sets by translates of strips. Aequationes Math. 22: 215–222. 22 Groemer, H. 1981. On coverings of convex sets by translates of slabs. Proc. Amer. Math. Soc. 82: 261–266. 23 Groemer, H. 1982. Covering and packing properties of bounded sequences of convex sets. Mathematika 29: 18–31. 24 Groemer, H. 1983. On space coverings by unbounded convex sets. J. Combin. Theory Ser. A 34: 71–79. 25 Groemer, H. 1983. On coverings of spheres by convex sets. Arch. Math. (Basel) 41: 89–96. 26 Groemer, H. 1984. Some remarks on translative coverings of convex domains by strips. Canad. Math. Bull. 27: 233–237. 27 Gruber, P. 1983. Approximation of convex bodies. In Convexity and Its Applications. P. M. Gruber & J. M. Wills, Eds.: 131–162. Birkhäuser Verlag. Basel , Switzerland . 28 Grünbaum, B. 1967. Convex Polytopes. Interscience. London , England . 29 Hadwiger, H. 1955. Volumschätzung für die einem Eikörper überdeckenden und unterdeckenden Parallelotope. Elem. Math. 10: 122–124. 30 Halmos, P. R. 1950. Measure Theory. D. Van Nostrand. Princeton , N.J. 31 Hlawka, E. 1949. Ausfüllung und Überdeckung konvexer Körper durch konvexe Körper. Monatsh. Math. 53: 81–131. 32 Kleitman, D. & M. Krieger. 1970. Packing squares in rectangles, I. Ann. N.Y. Acad. Sci. 175: 253–262. 33 Kleitman, D. & M. Krieger. 1975. An optimal bound for two dimensional bin packing. In Proceedings, 16th Annual Symposium on Foundations of Computer Science, Berkeley, California, 1975. Pp. 163–168. IEEE Computer Society. Long Beach , Calif . 34 Kosiaski, A. 19561957. A proof of an Auerbach-Banach-Mazur-Ulam theorem on convex bodies. Colloq. Math. 4: 216–218. 35 Kotljar, B. D. 1978. Packings of rectangular parallelotopes. Cybernetics 14(No. 2): 294–296. 36 Lee, T. Y., J. S. Lin, K. C. Tong & M. Y. Zhang. 1953. A solution of Bang's "plank problem." J. Chinese Math. Soc. 2: 139–143.(In Chinese with an English summary.) 37 Linhart, J. 1974. Eine extremale Verteilung von Grosskreisen. Elem. Math. 29: 57–59. 38 Macbeath. A. M. 1951. A compactness theorem for affine equivalence classes of convex regions. Canad. J. Math. 3: 54–61. 39 Makai, E., Jr. & J. Pack. Controlling of function classes and covering of Euclidean space. To appear. 40 R. D. Mauldin (Ed.). 1981. The Scottish Book. Birkhäuser Verlag. Basel , Switzerland . 41 Meir, A. & L. Moser. 1968. On packing of squares and cubes. J. Combin. Theory 5: 126–134. 42 Moon, J. W. & L. Moser. 1967. Some packing and covering theorems. Colloq. Math. 17: 103–110. 43 Moser, W. O. J. 1958. On the relative widths of coverings by convex bodies. Canad. Math. Bull. 1: 154, 168, 174. 44 Moser, W. O. J. 1981. Research Problems in Discrete Geometry. (Privately published collection of problems.). 45 Ohmann, D. 1952. Eine Abschätzung für die Dicke bei Überdeckung durch konvexe Körper. J. Reine Angew. Math. 190: 125–128. 46 Ohmann, D. 1957. Kurzer Beweis einer Abschätzung für die Breite bei Überdeckung durch konvexe Körper. Arch. Math. (Basel) 8: 150–152. 47 Radziszewski, K. 1952. Sur un problème extrémal relative aux figures inscrites et circon-scrites aux figures convexes. Ann. Univ. Mariae Curie-Sklodowska Sect. A 6: 5–18. 48 Rogers, C. A. 1964. Packing and Covering. Cambridge University Press. Cambridge , England . 49 Rogers, C. A. 1981. Some problems in the geometry of convex sets. In The Geometric Vein. C. Davis, B. Grünbaum & F. A. Scherk, Eds.: 279–284. Springer-Verlag. New York , N.Y. 50 Straszewicz, S. 1948. Un theoreme sur la largeur des ensembles convexes. Ann. Soc. Math. Polon. 21: 90–93. 51 SÜSS, W. 1955. Über Parallelogramme und Rechtecke, die sich ebenen Eibereichen ein- schreiben lassen. Rend. Mat. e Appl. (5) 14: 338–341. 52 Tarski, A. 1932. Further remarks about the degree of equivalence of polygons. Odbitka z Parametru 2: 310–314. Citing Literature Volume440, Issue1Discrete Geometry and ConvexityMay 1985Pages 262-278 ReferencesRelatedInformation
Referência(s)