Interferometry with Bose-Einstein Condensates in Microgravity
2013; American Physical Society; Volume: 110; Issue: 9 Linguagem: Inglês
10.1103/physrevlett.110.093602
ISSN1092-0145
AutoresHauke Müntinga, Henning Ahlers, Markus Krutzik, André Wenzlawski, Stefan Arnold, Dennis Becker, Kai Bongs, H. Dittus, Hans-Rainer Duncker, Naceur Gaaloul, C. Gherasim, Enno Giese, Christoph Grzeschik, Theodor W. Hänsch, Ortwin Hellmig, Waldemar Herr, Sven Herrmann, E. Kajari, Stephan Kleinert, Cláus Lämmerzahl, Wojciech Lewoczko-Adamczyk, Jonathan Ian Malcolm, Nadine Meyer, Roeland J. M. Nolte, Achim Peters, Manuel Popp, Jakob Reichel, Albert Roura, Jan Rudolph, Max Schiemangk, Manfred Schneider, Stephan Seidel, K. Sengstock, Vincenzo Tamma, T. Valenzuela, A. Vogel, R. Walser, Thijs Wendrich, Patrick Windpassinger, W. Zeller, Tim van Zoest, W. Ertmer, Wolfgang P. Schleich, Ernst M. Rasel,
Tópico(s)Atomic and Subatomic Physics Research
ResumoAtom interferometers covering macroscopic domains of space-time are a spectacular manifestation of the wave nature of matter. Because of their unique coherence properties, Bose-Einstein condensates are ideal sources for an atom interferometer in extended free fall. In this Letter we report on the realization of an asymmetric Mach-Zehnder interferometer operated with a Bose-Einstein condensate in microgravity. The resulting interference pattern is similar to the one in the far field of a double slit and shows a linear scaling with the time the wave packets expand. We employ delta-kick cooling in order to enhance the signal and extend our atom interferometer. Our experiments demonstrate the high potential of interferometers operated with quantum gases for probing the fundamental concepts of quantum mechanics and general relativity.
Referência(s)