Artigo Revisado por pares

Synthesis, Stabilization, Functionalization and, DFT Calculations of Gold Nanoparticles in Fluorous Phases (PTFE and Ionic Liquids)

2009; Wiley; Volume: 15; Issue: 39 Linguagem: Inglês

10.1002/chem.200900301

ISSN

1521-3765

Autores

Engelbert Redel, Michael Walter, Ralf Thomann, Christian Vollmer, Laith Hussein, Harald Scherer, Michael Krüger, Christoph Janiak,

Tópico(s)

Gas Sensing Nanomaterials and Sensors

Resumo

Gold nanoparticles (Au-NPs) were reproducibly obtained by thermal, photolytic, or microwave-assisted decomposition/reduction under argon from Au(CO)Cl or KAuCl(4) in the presence of n-butylimidazol dispersed in the ionic liquids (ILs) BMIm(+)BF(4)(-), BMIm(+)OTf(-), or BtMA(+)NTf(2)(-) (BMIm(+) = n-butylmethylimidazolium, BtMA(+) = n-butyltrimethylammonium, OTf(-) = (-)O(3)SCF(3), NTf(2)(-) = (-)N(O(2)SCF(3))(2)). The ultra small and uniform nanoparticles of about 1-2 nm diameter were produced in BMIm(+)BF(4)(-) and increased in size with the molecular volume of the ionic liquid anion used in BMIm(+)OTf(-) and BtMA(+)NTf(2)(-). Under argon the Au-NP/IL dispersion is stable without any additional stabilizers or capping molecules. From the ionic liquids, the gold nanoparticles can be functionalized with organic thiol ligands, transferred, and stabilized in different polar and nonpolar organic solvents. Au-NPs can also be brought onto and stabilized by interaction with a polytetrafluoroethylene (PTFE, Teflon) surface. Density functional theory (DFT) calculations favor interactions between IL anions instead of IL cations. This suggests a AuF interaction and anionic Au(n) stabilization in fluorine-containing ILs. The (19)F NMR signal in BMIm(+)BF(4)(-) shows a small Au-NP concentration-dependent shift. Characterization of the dispersed and deposited gold nanoparticles was done by transmission electron microscopy (TEM/HRTEM), transmission electron diffraction (TED), dynamic light scattering (DLS), UV/Vis absorbance spectroscopy, scanning electron microscopy (SEM), electron spin resonance (ESR), and electron probe micro analyses (EPM, SEM/EDX).

Referência(s)