Artigo Acesso aberto Revisado por pares

Structural changes of bamboo cellulose in formic acid

2008; North Carolina State University; Volume: 3; Issue: 2 Linguagem: Inglês

10.15376/biores.3.2.297-315

ISSN

1930-2126

Autores

Yong Sun, Lu Lin, Haibo Deng, Jiazhe Li, Beihai He, Runchang Sun, Pingkai Ouyang,

Tópico(s)

Lignin and Wood Chemistry

Resumo

The structure of cellulose from bamboo fiber before and after treatment in formic acid was investigated in comparison with microcrystalline-cellulose by solid state NMR, FTIR, and X-ray diffraction diagrams. Differences of molecular structures among two kinds of celluloses were validated and expatiated. Results from the experiments indicated notable differences in the crystalline or amorphous region of microcrystalline-cellulose and bamboo fiber. CP-MAS 13C-NMR, and FTIR spectroscopy revealed the presence of Iα and Iβ forms in all of the samples. The effect of acid solution was achieved simultaneously both in the crystalline region and the amorphous region, but there was a more intensive effect on the crystalline region for bamboo fiber. All of the cellulose samples revealed the same chain conformation but a different hydrogen bonding pattern. The absorbency of hydrogen bonds shifted to a high wave number and gradually decreased during treatment. The intermolecular hydrogen bond of 6-OH…O-3′ decreased first, and then increased gradually, which indicated that the cellulose bundled together during hydrolysis.

Referência(s)