Artigo Revisado por pares

Constructing and Exploiting the Fluorescent Protein Paintbox (Nobel Lecture)

2009; Wiley; Volume: 48; Issue: 31 Linguagem: Inglês

10.1002/anie.200901916

ISSN

1521-3773

Autores

Roger Y. Tsien,

Tópico(s)

Advanced Biosensing Techniques and Applications

Resumo

Angewandte Chemie International EditionVolume 48, Issue 31 p. 5612-5626 Review Constructing and Exploiting the Fluorescent Protein Paintbox (Nobel Lecture)† Roger Y. Tsien Prof., Roger Y. Tsien Prof. [email protected] Howard Hughes Medical Institute and Departments of Pharmacology and Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0647 (USA)Search for more papers by this author Roger Y. Tsien Prof., Roger Y. Tsien Prof. [email protected] Howard Hughes Medical Institute and Departments of Pharmacology and Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0647 (USA)Search for more papers by this author First published: 15 July 2009 https://doi.org/10.1002/anie.200901916Citations: 355 † Copyright© The Nobel Foundation 2008. We thank the Nobel Foundation, Stockholm, for permission to print this lecture. Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract Trip the light fantastic: The green fluorescent protein (GFP) is an invaluable tool for biochemical and medicinal research. It can make tumors, amyloid plaques from Alzheimer′s disease, or pathogenic bacteria equally visible. Ground-breaking contributions in this field have resulted in the 2008 Nobel Prize for Chemistry being awarded to Osamu Shimomura, Martin Chalfie, and Roger Tsien. The Nobel Laureates describe their research first-hand. References 1“In vitro attachment of bilins to apophycocyanin. I. Specific covalent adduct formation at cysteinyl residues involved in phycocyanobilin binding in C-phycocyanin”: D. M. Arciero, D. A. Bryant, A. N. Glazer, J. Biol. Chem. 1988, 263, 18343–18349. 10.1016/S0021-9258(19)81365-0 CASPubMedWeb of Science®Google Scholar 2“In vitro attachment of bilins to apophycocyanin. II. Determination of the structures of tryptic bilin peptides derived from the phycocyanobilin adduct”: D. M. Arciero, J. L. Dallas, A. N. Glazer, J. Biol. Chem. 1988, 263, 18350–18357. 10.1016/S0021-9258(19)81366-2 CASPubMedWeb of Science®Google Scholar 3“In vitro attachment of bilins to apophycocyanin. III. Properties of the phycoerythrobilin adduct”: D. M. Arciero, J. L. Dallas, A. N. Glazer, J. Biol. Chem. 1988, 263, 18358–18363. 10.1016/S0021-9258(19)81367-4 CASPubMedWeb of Science®Google Scholar 4“Oligomeric structure, enzyme kinetics, and substrate specificity of the phycocyanin α subunit phycocyanobilin lyase”: C. D. Fairchild, A. N. Glazer, J. Biol. Chem. 1994, 269, 8686–8694. 10.1016/S0021-9258(17)37022-9 CASPubMedWeb of Science®Google Scholar 5“A cyclic-3′,5′-adenosine monophosphate dependent protein kinase from the adrenal cortex: comparison with a cyclic AMP binding protein”: G. N. Gill, L. D. Garren, Biochem. Biophys. Res. Commun. 1970, 39, 335–343. 10.1016/0006-291X(70)90581-4 CASPubMedWeb of Science®Google Scholar 6“A cyclic 3′,5′-AMP-stimulated protein kinase from cardiac muscle”: M. A. Brostrom, E. M. Reimann, D. A. Walsh, E. G. Krebs, Adv. Enzyme Regul. 1970, 8, 191–203. 10.1016/0065-2571(70)90017-8 CASPubMedGoogle Scholar 7“Mechanism of activation by adenosine 3′:5′-cyclic monophosphate of a protein phosphokinase from rabbit reticulocytes”: M. Tao, M. L. Salas, F. Lipmann, Proc. Natl. Acad. Sci. USA 1970, 67, 408–414. 10.1073/pnas.67.1.408 CASPubMedWeb of Science®Google Scholar 8“Expression of the type I regulatory subunit of cAMP-dependent protein kinase in Escherichia coli”: L. D. Saraswat, M. Filutowicz, S. S. Taylor, J. Biol. Chem. 1986, 261, 11091–11096. 10.1016/S0021-9258(18)67352-1 CASPubMedWeb of Science®Google Scholar 9“Expression of the catalytic subunit of cAMP-dependent protein kinase in Escherichia coli”: L. W. Slice, S. S. Taylor, J. Biol. Chem. 1989, 264, 20940–20946. 10.1016/S0021-9258(19)30027-4 CASPubMedWeb of Science®Google Scholar 10“Fluorescence ratio imaging of cyclic AMP in single cells”: S. R. Adams, A. T. Harootunian, Y. J. Buechler, S. S. Taylor, R. Y. Tsien, Nature 1991, 349, 694–697. 10.1038/349694a0 CASPubMedWeb of Science®Google Scholar 11S. R. Adams, B. J. Bacskai, S. S. Taylor, R. Y. Tsien, Fluorescent Probes for Biological Activity of Living Cells—A Practical Guide (Ed.: ), Academic Press, New York, 1993, pp. 133–149. Google Scholar 12“Single-cell analysis of cyclic AMP response to parathyroid hormone in osteoblastic cells”: R. Civitelli, B. J. Bacskai, M. P. Mahaut-Smith, S. R. Adams, L. V. Avioli, R. Y. Tsien, J. Bone Miner. Res. 1994, 9, 1407–1417. 10.1002/jbmr.5650090912 CASPubMedWeb of Science®Google Scholar 13“Spatio-temporal dynamics of cAMP signals in an intact neural circuit”: C. M. Hempel, P. Vincent, S. R. Adams, R. Y. Tsien, A. I. Selverston, Nature 1996, 384, 166–169. 10.1038/384166a0 CASPubMedWeb of Science®Google Scholar 14“Intracellular cyclic AMP not Ca2+ determines the direction of vesicle movement in melanophores: direct measurements by fluorescence ratio imaging”: P. J. Sammak, S. R. Adams, A. T. Harootunian, M. Schliwa, R. Y. Tsien, J. Cell Biol. 1992, 117, 57–72. 10.1083/jcb.117.1.57 CASPubMedWeb of Science®Google Scholar 15“Spatially resolved dynamics of cAMP and protein kinase A subunits in Aplysia sensory neurons”: B. J. Bacskai, B. Hochner, M. Mahaut-Smith, S. R. Adams, B. K. Kaang, E. R. Kandel, R. Y. Tsien, Science 1993, 260, 222–226. 10.1126/science.7682336 CASPubMedWeb of Science®Google Scholar 16“Measurement of Ca2+ concentrations in living cells”: J. R. Blinks, W. G. Wier, P. Hess, F. G. Prendergast, Prog. Biophys. Mol. Biol. 1982, 40, 1–114. 10.1016/0079-6107(82)90011-6 CASPubMedWeb of Science®Google Scholar 17“Primary structure of the Aequorea victoria green-fluorescent protein”: D. C. Prasher, V. K. Eckenrode, W. W. Ward, F. G. Prendergast, M. J. Cormier, Gene 1992, 111, 229–233. 10.1016/0378-1119(92)90691-H CASPubMedWeb of Science®Google Scholar 18“Expression, purification, and properties of the plasma membrane Ca2+ pump and of its N-terminally truncated 105 kDa fragment”: R. Heim, T. Iwata, E. Zvaritch, H. P. Adamo, B. Rutishauser, E. E. Strehler, D. Guerini, E. Carafoli, J. Biol. Chem. 1992, 267, 24476–24484. CASPubMedWeb of Science®Google Scholar 19“Microdiversity of human-plasma-membrane calcium-pump isoform 2 generated by alternative RNA splicing in the N-terminal coding region”: R. Heim, M. Hug, T. Iwata, E. E. Strehler, E. Carafoli, Eur. J. Biochem. 1992, 205, 333–340. 10.1111/j.1432-1033.1992.tb16784.x CASPubMedWeb of Science®Google Scholar 20“Wavelength mutations and post-translational autooxidation of green fluorescent protein”: R. Heim, D. C. Prasher, R. Y. Tsien, Proc. Natl. Acad. Sci. USA 1994, 91, 12501–12504. 10.1073/pnas.91.26.12501 CASPubMedWeb of Science®Google Scholar 21“Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence energy transfer”: R. Heim, R. Y. Tsien, Curr. Biol. 1996, 6, 178–182. 10.1016/S0960-9822(02)00450-5 CASPubMedWeb of Science®Google Scholar 22“Chemical structure of the hexapeptide chromophore of the Aequorea green-fluorescent protein”: C. W. Cody, D. C. Prasher, W. M. Westler, F. G. Prendergast, W. W. Ward, Biochemistry 1993, 32, 1212–1218. 10.1021/bi00056a003 CASPubMedWeb of Science®Google Scholar 23“Reaction progress of chromophore biogenesis in green fluorescent protein”: L. Zhang, H. N. Patel, J. W. Lappe, R. M. Wachter, J. Am. Chem. Soc. 2006, 128, 4766–4772. 10.1021/ja0580439 CASPubMedWeb of Science®Google Scholar 24“Structure of the chromophore of Aequorea green fluorescent protein”: O. Shimomura, FEBS Lett. 1979, 104, 220–222. 10.1016/0014-5793(79)80818-2 CASWeb of Science®Google Scholar 25“Improved green fluorescence”: R. Heim, A. B. Cubitt, R. Y. Tsien, Nature 1995, 373, 663–664. 10.1038/373663b0 CASPubMedWeb of Science®Google Scholar 26“Heterologous HIS3 marker and GFP reporter modules for PCR-targeting in Saccharomyces cerevisiae”: A. Wach, A. Brachat, C. Alberti-Segui, C. Rebischung, P. Philippsen, Yeast 1997, 13, 1065–1075. 10.1002/(SICI)1097-0061(19970915)13:11 3.0.CO;2-K CASPubMedWeb of Science®Google Scholar 27“Red-shifted excitation mutants of the green fluorescent protein”: S. Delagrave, R. E. Hawtin, C. M. Silva, M. M. Yang, D. C. Youvan, Bio/Technology 1995, 13, 151–154. 10.1038/nbt0295-151 CASPubMedWeb of Science®Google Scholar 28“Fluorescence resonance energy transfer between blue-emitting and red-shifted excitation derivatives of the green fluorescent protein”: R. D. Mitra, C. M. Silva, D. C. Youvan, Gene 1996, 173, 13–17. 10.1016/0378-1119(95)00768-7 CASPubMedWeb of Science®Google Scholar 29“FACS-optimized mutants of the green fluorescent protein (GFP)”: B. P. Cormack, R. H. Valdivia, S. Falkow, Gene 1996, 173, 33–38. 10.1016/0378-1119(95)00685-0 CASPubMedWeb of Science®Google Scholar 30“X-ray diffraction and time-resolved fluorescence analyses of Aequorea green fluorescent protein crystals”: M. A. Perozzo, K. B. Ward, R. B. Thompson, W. W. Ward, J. Biol. Chem. 1988, 263, 7713–7716. CASPubMedWeb of Science®Google Scholar 31“Crystal structure of the Aequorea victoria green fluorescent protein”: M. Ormö, A. B. Cubitt, K. Kallio, L. A. Gross, R. Y. Tsien, S. J. Remington, Science 1996, 273, 1392–1395. 10.1126/science.273.5280.1392 CASPubMedWeb of Science®Google Scholar 32“The molecular structure of green fluorescent protein”: F. Yang, L. G. Moss, G. N. Phillips, Jr., Nat. Biotechnol. 1996, 14, 1246–1251. 10.1038/nbt1096-1246 CASPubMedWeb of Science®Google Scholar 33“Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein”: K. Brejc, T. K. Sixma, P. A. Kitts, S. R. Kain, R. Y. Tsien, M. Ormö, S. J. Remington, Proc. Natl. Acad. Sci. USA 1997, 94, 2306–2311. 10.1073/pnas.94.6.2306 CASPubMedWeb of Science®Google Scholar 34“Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400”: T. Furuichi, S. Yoshikawa, A. Miyawaki, K. Wada, N. Maeda, K. Mikoshiba, Nature 1989, 342, 32–38. 10.1038/342032a0 CASPubMedWeb of Science®Google Scholar 35“Structure-function relationships of the mouse inositol 1,4,5-trisphosphate receptor”: A. Miyawaki, T. Furuichi, Y. Ryou, S. Yoshikawa, T. Nakagawa, T. Saitoh, K. Mikoshiba, Proc. Natl. Acad. Sci. USA 1991, 88, 4911–4915. 10.1073/pnas.88.11.4911 CASPubMedWeb of Science®Google Scholar 36“A calmodulin-target peptide hybrid molecule with unique calcium-binding properties”: T. Porumb, P. Yau, T. S. Harvey, M. Ikura, Protein Eng. 1994, 7, 109–115. 10.1093/protein/7.1.109 CASPubMedWeb of Science®Google Scholar 37“Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin”: A. Miyawaki, J. Llopis, R. Heim, J. M. McCaffery, J. A. Adams, M. Ikura, R. Y. Tsien, Nature 1997, 388, 882–887. 10.1038/42264 CASPubMedWeb of Science®Google Scholar 38“Dynamic and quantitative Ca2+ measurements using improved cameleons”: A. Miyawaki, O. Griesbeck, R. Heim, R. Y. Tsien, Proc. Natl. Acad. Sci. USA 1999, 96, 2135–2140. 10.1073/pnas.96.5.2135 CASPubMedWeb of Science®Google Scholar 39“A genetically encoded, fluorescent indicator for cyclic AMP in living cells”: M. Zaccolo, F. De Giorgi, C. Y. Cho, L. Feng, T. Knapp, P. A. Negulescu, S. S. Taylor, R. Y. Tsien, T. Pozzan, Nat. Cell Biol. 2000, 2, 25–29. 10.1038/71345 CASPubMedWeb of Science®Google Scholar 40“Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes”: M. Zaccolo, T. Pozzan, Science 2002, 295, 1711–1715. 10.1126/science.1069982 CASPubMedWeb of Science®Google Scholar 41“Genetically encoded reporters of protein kinase A activity reveal impact of substrate tethering”: J. Zhang, Y. Ma, S. S. Taylor, R. Y. Tsien, Proc. Natl. Acad. Sci. USA 2001, 98, 14997–15002. 10.1073/pnas.211566798 CASPubMedWeb of Science®Google Scholar 42“FRET-based biosensors for protein kinases: illuminating the kinome”: J. Zhang, M. D. Allen, Mol. Biosyst. 2007, 3, 759–765. 10.1039/b706628g CASPubMedWeb of Science®Google Scholar 43“A genetically encoded fluorescent reporter reveals oscillatory phosphorylation”: J. D. Violin, J. Zhang, R. Y. Tsien, A. C. Newton, J. Cell Biol. 2003, 161, 899–909. 10.1083/jcb.200302125 CASPubMedWeb of Science®Google Scholar 44“Targeting protein kinase C activity reporter to discrete intracellular regions reveals spatiotemporal differences in agonist-dependent signaling”: L. L. Gallegos, M. T. Kunkel, A. C. Newton, J. Biol. Chem. 2006, 281, 30947–30956. 10.1074/jbc.M603741200 CASPubMedWeb of Science®Google Scholar 45“Spatio-temporal dynamics of protein kinase B/Akt signaling revealed by a genetically encoded fluorescent reporter”: M. T. Kunkel, Q. Ni, R. Y. Tsien, J. Zhang, A. C. Newton, J. Biol. Chem. 2005, 280, 5581–5587. 10.1074/jbc.M411534200 Google Scholar 46“Calcium-dependent regulation of protein kinase D revealed by a genetically encoded kinase activity reporter”: M. T. Kunkel, A. Toker, R. Y. Tsien, A. C. Newton, J. Biol. Chem. 2007, 282, 6733–6742. 10.1074/jbc.M608086200 CASPubMedWeb of Science®Google Scholar 47“Genetically encoded fluorescent reporters of protein tyrosine kinase activities in living cells”: A. Y. Ting, K. H. Kain, R. L. Klemke, R. Y. Tsien, Proc. Natl. Acad. Sci. USA 2001, 98, 15003–15008. 10.1073/pnas.211564598 CASPubMedWeb of Science®Google Scholar 48“A pair of FRET-based probes for tyrosine phosphorylation of the CrkII adaptor protein in vivo”: K. Kurokawa, N. Mochizuki, Y. Ohba, H. Mizuno, A. Miyawaki, M. Matsuda, J. Biol. Chem. 2001, 276, 31305–31310. 10.1074/jbc.M104341200 CASPubMedWeb of Science®Google Scholar 49“Visualizing the mechanical activation of Src”: Y. Wang, E. L. Botvinick, Y. Zhao, M. W. Berns, S. Usami, R. Y. Tsien, S. Chien, Nature 2005, 434, 1040–1045. 10.1038/nature03469 CASPubMedWeb of Science®Google Scholar 50“Fluorescent proteins from nonbioluminescent Anthozoa species”: M. V. Matz, A. F. Fradkov, Yu. A. Labas, A. P. Savitsky, A. G. Zaraisky, M. L. Markelov, S. A. Lukyanov, Nat. Biotechnol. 1999, 17, 969–973. 10.1038/13657 CASPubMedWeb of Science®Google Scholar 51“Biochemistry mutagenesis, and oligomerization of dsRed, a red fluorescent protein from coral”: G. S. Baird, D. A. Zacharias, R. Y. Tsien, Proc. Natl. Acad. Sci. USA 2000, 97, 11984–11989. 10.1073/pnas.97.22.11984 CASPubMedWeb of Science®Google Scholar 52“The structure of the chromophore within DsRed, a red fluorescent protein from coral”: L. A. Gross, G. S. Baird, R. C. Hoffman, K. K. Baldridge, R. Y. Tsien, Proc. Natl. Acad. Sci. USA 2000, 97, 11990–11995. 10.1073/pnas.97.22.11990 CASPubMedWeb of Science®Google Scholar 53“Refined crystal structure of DsRed, a red fluorescent protein from coral, at 2.0-Å resolution”: D. Yarbrough, R. M. Wachter, K. Kallio, M. V. Matz, S. J. Remington, Proc. Natl. Acad. Sci. USA 2001, 98, 462–467. 10.1073/pnas.98.2.462 CASPubMedWeb of Science®Google Scholar 54“The structural basis for red fluorescence in the tetrameric GFP homolog DsRed”: M. A. Wall, M. Socolich, R. Ranganathan, Nat. Struct. Biol. 2000, 7, 1133–1138. 10.1038/81992 CASPubMedWeb of Science®Google Scholar 55“A monomeric red fluorescent protein”: R. E. Campbell, O. Tour, A. E. Palmer, P. A. Steinbach, G. S. Baird, D. A. Zacharias, R. Y. Tsien, Proc. Natl. Acad. Sci. USA 2002, 99, 7877–7882. 10.1073/pnas.082243699 CASPubMedWeb of Science®Google Scholar 56“Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein”: N. C. Shaner, R. E. Campbell, P. A. Steinbach, B. N. G. Giepmans, A. E. Palmer, R. Y. Tsien, Nat. Biotechnol. 2004, 22, 1567–1572. 10.1038/nbt1037 CASPubMedWeb of Science®Google Scholar 57“Evolution of new nonantibody proteins via iterative somatic hypermutation”: L. Wang, W. C. Jackson, P. A. Steinbach, R. Y. Tsien, Proc. Natl. Acad. Sci. USA 2004, 101, 16745–16749. 10.1073/pnas.0407752101 CASPubMedWeb of Science®Google Scholar 58“Advances in fluorescent protein technology”: N. C. Shaner, G. H. Patterson, M. W. Davidson, J. Cell Sci. 2007, 120, 4247–4260. 10.1242/jcs.005801 CASPubMedWeb of Science®Google Scholar 59“Alzheimer’s disease—Fresh evidence points to an old suspect: Calcium”: J. Marx, Science 2007, 318, 384–385. 10.1126/science.318.5849.384 CASPubMedWeb of Science®Google Scholar 60“A beta plaques lead to aberrant regulation of calcium homeostasis in vivo resulting in structural and functional disruption of neuronal networks”: K. V. Kuchibhotla, S. T. Goldman, C. R. Lattarulo, H.-Y. Wu, B. T. Hyman, B. J. Bacskai, Neuron 2008, 59, 214–225. 10.1016/j.neuron.2008.06.008 CASPubMedWeb of Science®Google Scholar 61“A high-throughput screen for compounds that inhibit aggregation of the Alzheimer’s peptide”: W. Kim, Y. Kim, J. Min, D. J. Kim, Y.-T. Chang, M. H. Hecht, Chem. Biol. 2006, 1, 461–469. CASPubMedWeb of Science®Google Scholar 62“Visualizing spatiotemporal dynamics of multicellular cell-cycle progression”: A. Sakaue-Sawano, H. Kurokawa, T. Morimura, A. Hanyu, H. Hama, H. Osawa, S. Kashiwagi, K. Fukami, T. Miyata, H. Miyoshi, T. Imamura, M. Ogawa, H. Masai, A. Miyawaki, Cell 2008, 132, 487–498. 10.1016/j.cell.2007.12.033 CASPubMedWeb of Science®Google Scholar 63“Short tetracysteine tags to beta-tubulin demonstrate the significance of small labels for live cell imaging”: M. Andresen, R. Schmitz-Salue, S. Jakobs, Mol. Biol. Cell 2004, 15, 5616–5622. 10.1091/mbc.E04-06-0454 CASPubMedWeb of Science®Google Scholar 64“A FlAsH-based FRET approach to determine G protein-coupled receptor activation in living cells”: C. Hoffmann, G. Gaietta, M. Bünemann, S. R. Adams, S. Oberdorff-Maass, B. Behr, J.-P. Vilardaga, R. Y. Tsien, M. H. Ellisman, M. J. Lohse, Nat. Methods 2005, 2, 171–176. 10.1038/nmeth742 CASPubMedWeb of Science®Google Scholar 65“Secretion of type III effectors into host cells in real time”: J. Enninga, J. Mounier, P. Sansonetti, G. T. Van Nhieu, Nat. Methods 2005, 2, 959–965. 10.1038/nmeth804 CASPubMedWeb of Science®Google Scholar 66“The potential of nucleic acid repair in functional genomics”: M. C. Rice, K. Czymmek, E. B. Kmiec, Nat. Biotechnol. 2001, 19, 321–326. 10.1038/86701 CASPubMedWeb of Science®Google Scholar 67“Visualization of mRNA translation in living cells”: A. J. Rodriguez, S. M. Shenoy, R. H. Singer, J. Condeelis, J. Cell Biol. 2006, 175, 67–76. 10.1083/jcb.200512137 CASPubMedWeb of Science®Google Scholar 68“Mammalian cell-based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity”: B. R. Martin, B. N. Giepmans, S. R. Adams, R. Y. Tsien, Nat. Biotechnol. 2005, 23, 1308–1314. 10.1038/nbt1136 CASPubMedWeb of Science®Google Scholar 69“Hairpin structure of a biarsenical-tetracysteine motif determined by NMR”: F. Madani, J. Lind, P. Damberg, S. R. Adams, R. Y. Tsien, A. O. Gräslund, J. Am. Chem. Soc. 2009, 131, 4613–4615. 10.1021/ja809315x CASPubMedWeb of Science®Google Scholar 70“Reporter proteins for in vivo fluorescence without oxygen”: T. Drepper, T. Eggert, F. Circolone, A. Heck, U. Krauß, J.-K. Guterl, M. Wendorff, A. Losi, W. Gärtner, K.-E. Jaeger, Nat. Biotechnol. 2007, 25, 443–445. 10.1038/nbt1293 CASPubMedWeb of Science®Google Scholar 71“Harnessing phytochrome’s glowing potential”: A. J. Fischer, J. C. Lagarias, Proc. Natl. Acad. Sci. USA 2004, 101, 17334–17339. 10.1073/pnas.0407645101 CASPubMedWeb of Science®Google Scholar 72“The phytofluors: a new class of fluorescent protein probes”: J. T. Murphy, J. C. Lagarias, Curr. Biol. 1997, 7, 870–876. 10.1016/S0960-9822(06)00375-7 CASPubMedWeb of Science®Google Scholar 73“Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome”: X. Shu, A. Royant, M. Z. Lin, T. A. Aguilera, V. Lev-Ram, P. A. Steinbach, R. Y. Tsien, Science 2009, 324, 804–807. 10.1126/science.1168683 PubMedWeb of Science®Google Scholar 74“Tumor imaging by means of proteolytic activation of cell-penetrating peptides”: T. Jiang, E. S. Olson, Q. T. Nguyen, M. Roy, P. A. Jennings, R. Y. Tsien, Proc. Natl. Acad. Sci. USA 2004, 101, 17867–17872. 10.1073/pnas.0408191101 CASPubMedWeb of Science®Google Scholar 75“Understanding, using and improving green fluorescent protein”: A. B. Cubitt, R. Heim, S. R. Adams, A. E. Boyd, L. A. Gross, R. Y. Tsien, Trends Biochem. Sci. 1995, 20, 448–455. 10.1016/S0968-0004(00)89099-4 CASPubMedWeb of Science®Google Scholar 76“Nonenzymatic deamidation of asparaginyl and glutaminyl residues in proteins”: H. T. Wright, Crit. Rev. Biochem. Mol. Biol. 1991, 26, 1–52. 10.3109/10409239109081719 CASPubMedWeb of Science®Google Scholar 77“Expanded dynamic range of fluorescent indicators for Ca2+, by circularly permuted yellow fluorescent proteins”: T. Nagai, S. Yamada, T. Tominaga, M. Ichikawa, A. Miyawaki, Proc. Natl. Acad. Sci. USA 2004, 101, 10554–10559. 10.1073/pnas.0400417101 CASPubMedWeb of Science®Google Scholar 78“Predominant mode of human immunodeficiency virus transfer between T cells is mediated by sustained Env-dependent neutralization-resistant virological synapses”: P. Chen, W. Hubner, M. A. Spinelli, B. K. Chen, J. Virol. 2007, 81, 12582–12595. 10.1128/JVI.00381-07 CASPubMedWeb of Science®Google Scholar 79“A light-sensing knot revealed by the structure of the chromophore-binding domain of phytochrome”: J. R. Wagner, J. S. Brunzelle, K. T. Forest, R. D. Vierstra, Nature 2005, 438, 325–331. 10.1038/nature04118 CASPubMedWeb of Science®Google Scholar 80“Bright far-red fluorescent protein for whole-body imaging”: D. Shcherbo, E. M. Merzlyak, T. V. Chepurnykh, A. F. Fradkov, G. V. Ermakova, E. A. Solovieva, K. A. Lukyanov, E. A. Bogdanova, A. G. Zaraisky, S. Lukyanov, D. M. Chudakov, Nat. Methods 2007, 4, 741–746. 10.1038/nmeth1083 CASPubMedWeb of Science®Google Scholar Citing Literature Volume48, Issue31July 20, 2009Pages 5612-5626 This article also appears in:Nobel Lectures ReferencesRelatedInformation

Referência(s)