The Mexican amber anole, Anolis electrum , within a phylogenetic context: implications for the origins of Caribbean anoles
2014; Oxford University Press; Volume: 172; Issue: 1 Linguagem: Inglês
10.1111/zoj.12159
ISSN1096-3642
AutoresMaría del Rosario Castañeda, Emma Sherratt, Jonathan B. Losos,
Tópico(s)Lepidoptera: Biology and Taxonomy
ResumoZoological Journal of the Linnean SocietyVolume 172, Issue 1 p. 133-144 Original Article The Mexican amber anole, Anolis electrum, within a phylogenetic context: implications for the origins of Caribbean anoles María del Rosario Castañeda, Corresponding Author María del Rosario Castañeda Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138 USACorresponding author. E-mail: [email protected]Search for more papers by this authorEmma Sherratt, Emma Sherratt Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138 USASearch for more papers by this authorJonathan B. Losos, Jonathan B. Losos Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138 USASearch for more papers by this author María del Rosario Castañeda, Corresponding Author María del Rosario Castañeda Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138 USACorresponding author. E-mail: [email protected]Search for more papers by this authorEmma Sherratt, Emma Sherratt Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138 USASearch for more papers by this authorJonathan B. Losos, Jonathan B. Losos Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138 USASearch for more papers by this author First published: 04 August 2014 https://doi.org/10.1111/zoj.12159Citations: 2Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Anoles are well-known examples of adaptive radiation and convergent evolution. Their phylogenetic relationships have been intensely studied, but their fossil record remains fairly poor, limiting our understanding of their evolutionary history. We present new data on Anolis electrum Lazell, 1965, the first discovered fossil anole and sole vertebrate described from Mexican amber, using X-ray computed tomography. We inferred the phylogenetic relationships of A. electrum and comment on its use in estimating the age of Anolis origins, which has significant relevance in explaining the presence of anoles on Caribbean islands. Anolis electrum is represented by two pieces of amber containing parts of the same individual. Partial squamation and skeleton details are well preserved, although only ten characters commonly used in phylogenetic analyses could be scored. The lack of informative characters resulted in A. electrum being inferred in 14 different places within four recognized subclades – Dactyloa, cristatellus series, darlingtoni series, and Norops – one of which corresponds to previously suggested close relationships. Results fail to support a suggested age estimation of 130 Myr for Anolis; consequently, the hypothesis of overwater dispersal as the explanation for the occurrence of anoles on Caribbean islands remains the most robust hypothesis. © 2014 The Linnean Society of London Supporting Information Filename Description zoj12159-sup-0001-fig_s1.tif4.7 MB Figure S1. Light microscopy photographs of the holotype of Anolis electrum (UCMP68496). zoj12159-sup-0002-fig_s2.tif11.2 MB Figure S2. Light microscopy photographs of the paratype of Anolis electrum (UCMP68497). zoj12159-sup-0003-video_s1.mp41.2 MB Video S1. The hindlimb and abdomen of Anolis electrum (UCMP 68496) as revealed by HRXCT. zoj12159-sup-0004-video_s2.mp41.6 MB Video S2. The head, forelimbs and partial body of Anolis electrum (UCMP 68497) as revealed by HRXCT. zoj12159-sup-0005-si.docx72.5 KB Appendix S1. List of morphological synapomorphies supporting the sister relationship of Anolis electrum in each of the 14 optimal topologies (Fig. 3). Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References Castañeda MdR, de Queiroz K. 2011. Phylogenetic relationships of the Dactyloa clade of Anolis lizards based on nuclear and mitochondrial DNA sequence data. Molecular Phylogenetics and Evolution 61: 784–800. Castañeda MdR, de Queiroz K. 2013. Phylogeny of the Dactyloa clade of Anolis lizards: new insights from combining morphological and molecular data. Bulletin of the Museum of Comparative Zoology 160: 345–398. Castiglia R, Annesi F, Bezerra AMR, García A, Flores-Villela O. 2010. Cytotaxonomy and DNA taxonomy of lizards (Squamata, Sauria) from a tropical dry forest in the Chamela-Cuixmala Biosphere Reserve on the coast of Jalisco, Mexico. Zootaxa 2508: 1–29. Chun WCH. 2007. An anole lizard preserved in Colombian copal. Herpetological Review 38: 294–296. Creer DA, de Queiroz K, Jackman TR, Losos JB, Larson A. 2001. Systematics of the Anolis roquet series of the southern Lesser Antilles. Journal of Herpetology 35: 428–441. Durán-Ruiz C, Riquelme F, Coutiño-José M, Carbot-Chanona G, Castaño-Meneses G, Ramos-Arias M. 2013. Ants from the Miocene Totolapa amber (Chiapas, Mexico), with the first record of the genus Forelius (Hymenoptera, Formicidae). Canadian Journal of Earth Sciences 50: 495–502. Edgecombe GD, Vahtera V, Stock SR, Kallonen A, Xiao X, Rack A, Giribet G. 2012. A scolopocryptopid centipede (Chilopoda: Scolopendromorpha) from Mexican amber: synchrotron microtomography and phylogenetic placement using a combined morphological and molecular data set. Zoological Journal of the Linnean Society 166: 768–786. Etheridge R. 1965. Fossil lizards from the Dominican Republic. Quarterly Journal of the Florida Academy of Sciences 28: 1–24. Etheridge R. 1966. Pleistocene lizards from New Providence. Quarterly Journal of the Florida Academy of Sciences 28: 349–358. Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791. Finden CR, Gordon AD. 1985. Obtaining common pruned trees. Journal of Classification 2: 255–276. Glor RE, Kolbe JJ, Powell R, Larson A, Losos JB. 2003. Phylogenetic analysis of ecological and morphological diversification in Hispaniolan trunk-ground anoles (Anolis cybotes group). Evolution 57: 2383–2397. Harmon LJ, Schulte JA II, Larson A, Losos JB. 2003. Tempo and mode of evolutionary radiation in iguanian lizards. Science 301: 961–964. Henwood AA. 1993. Ecology and taphonomy of Dominican Republic amber and its inclusions. Lethaia 26: 237–245. Iturralde-Vinent MA. 2001. Geology of the amber-bearing deposits of the Greater Antilles. Caribbean Journal of Science 17: 141–167. Iturralde-Vinent MA, MacPhee RDE. 1996. Age and paleogeographical origin of Dominican amber. Science 273: 1850–1852. Jackman TR, Irschick DJ, De Queiroz K, Losos JB, Larson A. 2002. Molecular phylogenetic perspective on evolution of lizards of the Anolis grahami series. Journal of Experimental Zoology B 294: 1–16. Jackman TR, Larson A, de Queiroz K, Losos JB. 1999. Phylogenetic relationships and tempo of early diversification in Anolis lizards. Systematic Biology 48: 254–285. Köhler G. 2014. Characters of external morphology used in Anolis taxonomy – Definition of terms, advice on usage, and illustrated examples. Zootaxa 3774: 201–257. Köhler G, McCranie JR. 2001. Two new species of anoles from northern Honduras (Squamata: Polychrotidae). Senckenbergiana Biologica 81: 235–245. Kumazawa Y, Nishida M. 1993. Sequence evolution of mitochondrial tRNA genes and deep-branch animal phylogenetics. Journal of Molecular Evolution 37: 380–398. Langenheim JH. 1966. Botanical source of amber from Chiapas. Ciencia 24: 201–211. Langenheim JH. 1967. Preliminary investigations of Hymenaea courbaril as resin producer. Journal of the Arnold Arboretum 48: 203–230. Langenheim JH. 2003. Plant Resins. Chemistry, Evolution, Ecology, and Etnobotany. Portland, OR, USA: Timber Press. Lazell JD Jr. 1965. An Anolis (Sauria, Iguanidae) in amber. Journal of Paleontology 39: 379–382. Losos JB. 2009. Lizards in an evolutionary tree: ecology and adaptive radiation of anoles. Berkeley, CA: University of California Press. Macey JR, Larson A, Ananjeva NB, Papenfuss TJ. 1997. Evolutionary shifts in three major structural features of the mitochondrial genome among Iguanian lizards. Journal of Molecular Evolution 44: 660–674. Maddison DR, Maddison WP. 2001. MacClade: analysis of phylogeny and character evolution. Version 4.07. Sunderland, MA, USA: Sinauer Associates. Martínez-Grimaldo RE, Riquelme F, Martínez-Méndez N, Luna B, Zuñiga L, Alvarado-Ortega J, Losos JB, Castañeda MdR. 2013. Anole lizards (Squamata: Dactyloidae) from the Miocene Chiapas amber, with comments on broader aspects of anoles evolution. In: VH Reynoso, B Oseguera-Montiel, P Flores-Mejía, eds. VIII Congreso Latinoamericano de Paleontología & XIII Congreso Mexicano de Paleontología. Guanajuato, México: Sociedad Mexicana de Paleontología, A. C. – Museo Dugès, Universidad de Guanajuato, 63. Mulcahy DG, Noonan BP, Moss T, Townsend TM, Reeder TW, Sites JW Jr, Wiens JJ. 2012. Estimating divergence dates and evaluating dating methods using phylogenomic and mitochondrial data in squamate reptiles. Molecular Phylogenetics and Evolution 65: 974–991. Nicholson KE. 2002. Phylogenetic analysis and a test of the current infrageneric classification of Norops (beta Anolis). Herpetological Monographs 16: 93–120. Nicholson KE. 2005. Historical biogeographic relationships within the tropical lizard genus Norops. In: MA Donnelly, BI Crother, C Guyer, MH Wake, ME White, eds. Ecology and evolution in the tropics: a herpetological perspective. Chicago, IL: The University of Chicago Press, 284–305. Nicholson KE, Crother BI, Guyer C, Savage JM. 2012. It is time for a new classification of anoles (Squamata: Dactyloidae). Zootaxa 3477: 1–108. Nicholson KE, Glor RE, Kolbe JJ, Larson A, Hedges SB, Losos JB. 2005. Mainland colonization by island lizards. Journal of Biogeography 32: 929–938. Nicholson KE, Mijares-Urrutia A, Larson A. 2006. Molecular phylogenetics of the Anolis onca series: a case history in retrograde evolution revisited. Journal of Experimental Zoology B 306: 450–459. O'Leary MA, Kaufman SG. 2012. MorphoBank 3.0: web application for morphological phylogenetics and taxonomy. Available at: http://www.morphobank.org Penney D. 2002. Paleoecology of Dominican amber preservation: spider (Araneae) inclusions demonstrate a bias for active, trunk-dwelling faunas. Paleobiology 28: 389–398. Pinto G, Mahler DL, Harmon LJ, Losos JB. 2008. Testing the island effect in adaptive radiation: rates and patterns of morphological diversification in Caribbean and mainland Anolis lizards. Proceedings of the Royal Society B: Biological Sciences 275: 2749–2757. Poe S. 2004. Phylogeny of anoles. Herpetological Monographs 18: 37–89. Poinar Jr. GO. 1992. Life in amber. Standford, California: Standford University Press. Poinar Jr. G. 2010. Palaeoecological perspectives in Dominican amber. Annales de la Société Entomologique de France 46: 23–52. Poinar Jr. G, Brown AE. 2002. Hymenaea mexicana sp. nov. (Leguminosae: Caesalpinioideae) from Mexican amber indicates Old World connections. Botanical Journal of the Linnean Society 139: 125–132. Polcyn MJ, Rogers II JV, Kobayashi Y, Jacobs LL. 2002. Computed tomography of an Anolis lizard in Dominican amber: systematic, taphonomic, biogeographic, and evolutionary implications. Palaeontologia Electronica 5: 1–13. Pyron RA, Burbrink FT. 2014. Early origin of viviparity and multiple reversions to oviparity in squamate reptiles. Ecology Letters 17: 13–21. de Queiroz K, Chu L, Losos JB. 1998. A second Anolis lizard in Dominican amber and the systematics and ecological morphology of Dominican amber anoles. American Museum Novitates 3249: 1–23. Rieppel O. 1980. Green anole in Dominican amber. Nature 286: 486–487. Roughgarden J, Pacala S. 1989. Taxon cycle among Anolis lizard populations: review of evidence. In: D Otte, J Endler, eds. Speciation and Its Consequences. Sunderland, MA: Sinauer Associates, 403–432. Schaad EW, Poe S. 2010. Patterns of ecomorphological convergence among mainland and island Anolis lizards. Biological Journal of the Linnean Society 101: 852–859. Schulte II JA, Valladares JP, Larson A. 2003. Phylogenetic relationships within Iguanidae inferred using molecular and morphological data and a phylogenetic taxonomy of Iguanian lizards. Herpetologica 59: 399–419. Shochat D, Dessauer HC. 1981. Comparative study of albumins of Anolis lizards of the Caribbean islands. Comparative Biochemistry and Physiology 68A: 67–73. Solórzano Kraemer MM. 2007. Systematic, palaeoecology, and palaeobiogeography of the insect fauna from Mexican amber. Palaeontographica Abteilung. A 282: 1–133. Solórzano Kraemer MM. 2010. Mexican Amber. In: D Penney, ed. Biodiversity of fossils in amber from the major world deposits. Manchester, UK: Siri Scientific Press, 42–56. Spoor CF, Zonneveld FW, Macho GA. 1993. Linear measurements of cortical bone and dental enamel by computed tomography: applications and problems. American Journal of Physical Anthropology 91: 469–484. Steadman DW, Pregill GK, Olson SL. 1984. Fossil vertebrates from Antigua, Lesser Antilles: evidence for late holocene human-caused extictions in the West Indies. Proceedings of the National Academy of Sciences of the United States of America 81: 4448–4451. Swofford DL. 2002. PAUP*. Phylogenetic analysis using parsimony (* and other methods). Version 4.0b10. Sunderland, MA, USA: Sinauer Associates. Templeton AR. 1983. Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the evolution of humans and apes. Evolution 37: 221–244. Thompson JD, Gibson TJ, Piewniak F, Jeanmougin F, Higgins DG. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25: 4876–4882. Townsend TM, Mulcahy DG, Noonan BP, Sites JJW, Kuczynski CA, Wiens JJ, Reeder TW. 2011. Phylogeny of iguanian lizards inferred from 29 nuclear loci, and a comparison of concatenated and species-tree approaches for an ancient, rapid radiation. Molecular Phylogenetics and Evolution 61: 363–380. Volume Graphics. 2001. VGStudio MAX version 2.0. Germany: Volume Graphics GmbH. Citing Literature Volume172, Issue1September 2014Pages 133-144 ReferencesRelatedInformation
Referência(s)