Computational Enzyme Design
2013; Wiley; Volume: 52; Issue: 22 Linguagem: Inglês
10.1002/anie.201204077
ISSN1521-3773
AutoresGert Kiss, Nihan Çelebi‐Ölçüm, Rocco Moretti, David Baker, K. N. Houk,
Tópico(s)Chemical Synthesis and Analysis
ResumoAbstract Recent developments in computational chemistry and biology have come together in the “inside‐out” approach to enzyme engineering. Proteins have been designed to catalyze reactions not previously accelerated in nature. Some of these proteins fold and act as catalysts, but the success rate is still low. The achievements and limitations of the current technology are highlighted and contrasted to other protein engineering techniques. On its own, computational “inside‐out” design can lead to the production of catalytically active and selective proteins, but their kinetic performances fall short of natural enzymes. When combined with directed evolution, molecular dynamics simulations, and crowd‐sourced structure‐prediction approaches, however, computational designs can be significantly improved in terms of binding, turnover, and thermal stability.
Referência(s)