Gusev and Suter calculation of the diffusion coefficients of light gases in silicalite-1 membrane and silica-sodalite zeolite
2003; Elsevier BV; Volume: 36; Issue: 3 Linguagem: Inglês
10.1016/j.seppur.2003.07.002
ISSN1873-3794
Autores Tópico(s)Spectroscopy and Quantum Chemical Studies
ResumoTransition-state theory (TST) as implemented by Gusev and Suter was applied to calculate the zero-loading-diffusion coefficients of 12 gases (He, Ne, Ar, Xe, H2, N2, O2, CO2, SF6, CH4, CF4, and i-C4H10) in two different zeolites, silicalite-1 and silica-sodalite. Gusev–Suter (GS) model was and is widely and successfully used for polymeric matrixes. Therefore, the reliability of this method was studied for gas diffusion in silicalite-1 and silica-sodalite using CVFF_aug and CVFF force fields and two simulation cells. The results were compared with diffusion coefficients used to reproduce the permeance in a silicalite-1 membrane. Model limits were also tested comparing the H2, He and Ne diffusion in silica-sodalite with previous calculations of classical and quantum TST. Gusev–Suter method systematically underestimates the average diffusion coefficients of the considered gases; underestimation was less marked for species larger than methane. The ratio between Dx and Dy components in silicalite-1 was found near one differently from the expected result. The diffusion coefficients obtained using Gusev–Suter approach in silicalite-1 and silica-sodalite can be improved with an appropriate average displacements definition, set in this work equal to 0. Concerning the anisotropy diffusion in silicalite-1, this work shows that correlated jumps in a Gusev–Suter procedure would also be considered. Gusev–Suter computational time for diffusivity estimation of Xe, CF4, CO2 and SF6 is much shorter than the corresponding molecular dynamics (MD) simulation time.
Referência(s)