Artigo Revisado por pares

Catabolic Fate and Pharmacokinetic Characterization of Trastuzumab Emtansine (T-DM1): an Emphasis on Preclinical and Clinical Catabolism

2012; Bentham Science Publishers; Volume: 13; Issue: 7 Linguagem: Inglês

10.2174/138920012802138598

ISSN

1875-5453

Autores

Ben‐Quan Shen, Daniela Bumbaca, Ola M. Saad, Qin Yue, Cinthia V. Pastuskovas, S. Cyrus Khojasteh, Jay Tibbitts, Surinder Kaur, Bei Wang, Yu‐Waye Chu, Patricia LoRusso, Sandhya Girish,

Tópico(s)

Lung Cancer Treatments and Mutations

Resumo

Trastuzumab emtansine (T-DM1) is an antibody-drug conjugate in clinical development for the treatment of human epidermal growth factor receptor 2 (HER2)-positive cancers. Herein, we describe a series of studies to assess T-DM1 absorption, distribution, metabolism, and excretion (ADME) in rats as well as to assess human exposure to T-DM1 catabolites. Following administration of unlabeled and radiolabeled T-DM1 in female Sprague Dawley rats as a single dose, plasma, urine, bile and feces were assessed for mass balance, profiling and identification of catabolites. In rats, the major circulating species in plasma was T-DM1, while DM1 concentrations were low (1.08 to 15.6 ng/mL). The major catabolites found circulating in rat plasma were DM1, [N-maleimidomethyl] cyclohexane-1- carboxylate-DM1 (MCC-DM1), and Lysine-MCC-DM1. These catabolites identified in rats were also detected in plasma samples from patients with HER2-positive metastatic breast cancer who received single-agent T-DM1 (3.6 mg/kg every 3 weeks) in a phase 2 clinical study. There was no evidence of tissue accumulation in rats or catabolite accumulation in human plasma following multiple dosing. In rats, T-DM1 was distributed nonspecifically to the organs without accumulation. The major pathway of DM1-containing catabolite elimination in rats was the fecal/biliary route, with up to 80% of radioactivity recovered in the feces and 50% in the bile. The rat T-DM1 ADME profile is likely similar to the human profile, although there may be differences since trastuzumab does not bind the rat HER2- like receptor. Further research is necessary to more fully understand the T-DM1 ADME profile in humans.

Referência(s)