Artigo Acesso aberto Revisado por pares

Expression of a G i -coupled receptor in the heart causes impaired Ca 2+ handling, myofilament injury, and dilated cardiomyopathy

2007; American Physical Society; Volume: 294; Issue: 1 Linguagem: Inglês

10.1152/ajpheart.00829.2007

ISSN

1522-1539

Autores

Diana T. McCloskey, Sally Turcato, Guanying Wang, Lynne Turnbull, Bo‐Qing Zhu, Thomas Bambino, Anita Nguyen, David H. Lovett, Robert A. Nissenson, Joel S. Karliner, Anthony J. Baker,

Tópico(s)

Force Microscopy Techniques and Applications

Resumo

Increased signaling by G(i)-coupled receptors has been implicated in dilated cardiomyopathy. To investigate the mechanisms, we used transgenic mice that develop dilated cardiomyopathy after conditional expression of a cardiac-targeted G(i)-coupled receptor (Ro1). Activation of G(i) signaling by the Ro1 agonist spiradoline caused decreased cellular cAMP levels and bradycardia in Langendorff-perfused hearts. However, acute termination of Ro1 signaling with the antagonist nor-binaltorphimine did not reverse the Ro1-induced contractile dysfunction, indicating that Ro1 cardiomyopathy was not due to acute effects of receptor signaling. Early after initiation of Ro1 expression, there was a 40% reduction in the abundance of the sarcoplasmic reticulum Ca(2+)-ATPase (P < 0.05); thereafter, there was progressive impairment of both Ca(2+) handling and force development assessed with ventricular trabeculae. Six weeks after initiation of Ro1 expression, systolic Ca(2+) concentration was reduced to 0.61 +/- 0.08 vs. 0.91 +/- 0.07 microM for control (n = 6-8; P < 0.05), diastolic Ca(2+) concentration was elevated to 0.41 +/- 0.07 vs. 0.23 +/- 0.06 microM for control (n = 6-8; P < 0.01), and the decline phase of the Ca(2+) transient (time from peak to 50% decline) was slowed to 0.25 +/- 0.02 s vs. 0.13 +/- 0.02 s for control (n = 6-8; P < 0.01). Early after initiation of Ro1 expression, there was a ninefold elevation of matrix metalloproteinase-2 (P < 0.01), which is known to cause myofilament injury. Consistent with this, 6 wk after initiation of Ro1 expression, Ca(2+)-saturated myofilament force in skinned trabeculae was reduced to 21 +/- 2 vs. 38 +/- 0.1 mN/mm(2) for controls (n = 3; P < 0.01). Furthermore, electron micrographs revealed extensive myofilament damage. These findings may have implications for some forms of human heart failure in which increased activity of G(i)-coupled receptors leads to impaired Ca(2+) handling and myofilament injury, contributing to impaired ventricular pump function and heart failure.

Referência(s)