Recrossing and Dynamic Matching Effects on Selectivity in a Diels–Alder Reaction
2009; Wiley; Volume: 48; Issue: 48 Linguagem: Inglês
10.1002/anie.200903293
ISSN1521-3773
AutoresZhihong Wang, Jennifer S. Hirschi, Daniel A. Singleton,
Tópico(s)Asymmetric Synthesis and Catalysis
ResumoAngewandte Chemie International EditionVolume 48, Issue 48 p. 9156-9159 Communication Recrossing and Dynamic Matching Effects on Selectivity in a Diels–Alder Reaction† Zhihong Wang Dr., Zhihong Wang Dr. Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012 (USA), Fax: (+1) 979-845-0653 http://www.chem.tamu.edu/faculty/singletonSearch for more papers by this authorJennifer S. Hirschi Dr., Jennifer S. Hirschi Dr. [email protected] Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012 (USA), Fax: (+1) 979-845-0653 http://www.chem.tamu.edu/faculty/singletonSearch for more papers by this authorDaniel A. Singleton Prof., Daniel A. Singleton Prof. Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012 (USA), Fax: (+1) 979-845-0653 http://www.chem.tamu.edu/faculty/singletonSearch for more papers by this author Zhihong Wang Dr., Zhihong Wang Dr. Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012 (USA), Fax: (+1) 979-845-0653 http://www.chem.tamu.edu/faculty/singletonSearch for more papers by this authorJennifer S. Hirschi Dr., Jennifer S. Hirschi Dr. [email protected] Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012 (USA), Fax: (+1) 979-845-0653 http://www.chem.tamu.edu/faculty/singletonSearch for more papers by this authorDaniel A. Singleton Prof., Daniel A. Singleton Prof. Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012 (USA), Fax: (+1) 979-845-0653 http://www.chem.tamu.edu/faculty/singletonSearch for more papers by this author First published: 11 November 2009 https://doi.org/10.1002/anie.200903293Citations: 96 † We thank NIH grant no GM-45617, NSF-CRIF CHE-0541587, and The Robert A. Welch Foundation for financial support. Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract Up and down the hill: The products from the hetero-Diels–Alder reaction of acrolein with methyl vinyl ketone arise from a single transition state (see scheme) and trajectory studies accurately predict the selectivity. In an extension of the dynamic matching idea of Carpenter, the product formed is determined by the direction of motion passing through the transition state. Recrossing occurs extensively and decreases formation of the minor product. Supporting Information Detailed facts of importance to specialist readers are published as ”Supporting Information”. Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors. Filename Description anie_200903293_sm_miscellaneous_information.pdf206.6 KB miscellaneous_information Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1 1aB. K. Carpenter, Angew. Chem. 1998, 110, 3532–3543; Angew. Chem. Int. Ed. 1998, 37, 3340–3350; 1bB. K. Carpenter, J. Phys. Org. Chem. 2003, 16, 858–868. 2 2aB. K. Carpenter, J. Am. Chem. Soc. 1985, 107, 5730–5732; 2bB. K. Carpenter, J. Am. Chem. Soc. 1995, 117, 6336–6344; 2cB. K. Carpenter, J. Am. Chem. Soc. 1996, 118, 10329–10330; 2dM. B. Reyes, B. K. Carpenter, J. Am. Chem. Soc. 2000, 122, 10163–10176; 2eM. B. Reyes, E. B. Lobkovsky, B. K. Carpenter, J. Am. Chem. Soc. 2002, 124, 641–651; 2fJ. A. Nummela, B. K. Carpenter, J. Am. Chem. Soc. 2002, 124, 8512–8513; 2gA. E. Litovitz, I. Keresztes, B. K. Carpenter, J. Am. Chem. Soc. 2008, 130, 12085–12094. 3aC. Doubleday, Jr., K. Bolton, W. L. Hase, J. Am. Chem. Soc. 1997, 119, 5251–5252; 3bC. Doubleday, M. Nendel, K. N. Houk, D. Thweatt, M. Page, J. Am. Chem. Soc. 1999, 121, 4720–4721; 3cC. Doubleday, C. P. Suhrada, K. N. Houk, J. Am. Chem. Soc. 2006, 128, 90–94. 4 4aA. Kless, M. Nendel, S. Wilsey, K. N. Houk, J. Am. Chem. Soc. 1999, 121, 4524–4525; 4bS. L. Debbert, B. K. Carpenter, D. A. Hrovat, W. T. Borden, J. Am. Chem. Soc. 2002, 124, 7896–7897. 5 5aH. Metiu, J. Ross, R. Silbey, T. F. George, J. Chem. Phys. 1974, 61, 3200–3209; 5bP. Valtazanos, K. Ruedenberg, Theor. Chim. Acta 1986, 69, 281–307; 5cT. L. Windus, M. S. Gordon, L. W. Burggraf, L. P. Davis, J. Am. Chem. Soc. 1991, 113, 4356–4357; 5dA. Tachibana, I. Okazaki, M. Koizumi, K. Hori, T. Yamabe, J. Am. Chem. Soc. 1985, 107, 1190–1196; 5eC. Zhou, D. M. Birney, Org. Lett. 2002, 4, 3279–3282; 5fH. Wei, D. A. Hrovat, W. T. Borden, J. Am. Chem. Soc. 2006, 128, 16676–16683; 5gS. Shaik, D. Danovich, G. N. Sastry, P. Y. Ayala, H. B. Schlegel, J. Am. Chem. Soc. 1997, 119, 9237–9245. 6aD. A. Singleton, C. Hang, M. J. Szymanski, M. P. Meyer, A. G. Leach, K. T. Kuwata, J. S. Chen, A. Greer, C. S. Foote, K. N. Houk, J. Am. Chem. Soc. 2003, 125, 1319–1328; 6bD. A. Singleton, C. Hang, M. J. Szymanski, E. E. Greenwald, J. Am. Chem. Soc. 2003, 125, 1176–1177; 6cT. Bekele, C. F. Christian, M. A. Lipton, D. A. Singleton, J. Am. Chem. Soc. 2005, 127, 9216–9223. 7J. B. Thomas, J. R. Waas, M. Harmata, D. A. Singleton, J. Am. Chem. Soc. 2008, 130, 14544–14555. 8 8aP. Caramella, P. Quadrelli, L. Toma, J. Am. Chem. Soc. 2002, 124, 1130–1131; 8bL. Toma, S. Romano, P. Quadrelli, P. Caramella, Tetrahedron Lett. 2001, 42, 5077–5080; 8cK. K. Kelly, J. S. Hirschi, D. A. Singleton, J. Am. Chem. Soc. 2009, 131, 8382–8383. 9B. R. Ussing, C. Hang, D. A. Singleton, J. Am. Chem. Soc. 2006, 128, 7594–7607. 10 10aN. Celebi-Olcum, D. H. Ess, V. Aviyente, K. N. Houk, J. Org. Chem. 2008, 73, 7472–7480; 10bJ. Limanto, K. S. Khuong, K. N. Houk, M. L. Snapper, J. Am. Chem. Soc. 2003, 125, 16310–16321. 11For the application of variational transition state theory to isotope effects on surfaces involving symmetry breaking, see: A. Gonzalez-Lafont, M. Moreno, J. M. Lluch, J. Am. Chem. Soc. 2004, 126, 13089–13094. 12W. L. Hase, Science 1994, 266, 998–1002. 13Y. Oyola, D. A. Singleton, J. Am. Chem. Soc. 2009, 131, 3130–3131. 14N. Ibrahim, T. Eggimann, E. A. Dixon, H. Wieser, Tetrahedron 1990, 46, 1503–1514. 15B. P. Mundy, R. D. Otzenberger, A. R. DeBernardis, J. Org. Chem. 1971, 36, 2390. 16 16aK. B. Lipkowitz, B. P. Mundy, D. Geeseman, Synth. Commun. 1973, 3, 453–458; 16bR. P. Lutz, J. D. Roberts, J. Am. Chem. Soc. 1961, 83, 2198–2200. 17 17aW. L. Hase, K. H. Song, M. S. Gordon, Comput. Sci. Eng. 2003, 5, 36–44; 17bK. Bolton, W. L. Hase, G. H. Peslherbe in Modern Methods for Multidimensional Dynamics Computations in Chemistry (Ed.: ), World Scientific, Singapore, 1998, pp. 143–189; 17cFor approaches to dynamics in large systems, see: H. Lin, D. G. Truhlar, Theor. Chem. Acc. 2007, 117, 185–199; and 17dS. C. L. Kamerlin, J. Cao, E. Rosta, A. Warshel, J. Phys. Chem. B 2009, 113, 10905–10915. Citing Literature Volume48, Issue48November 16, 2009Pages 9156-9159 ReferencesRelatedInformation
Referência(s)