A Retrospective and Prospective Survey of the Monte Carlo Method
1970; Society for Industrial and Applied Mathematics; Volume: 12; Issue: 1 Linguagem: Inglês
10.1137/1012001
ISSN1095-7200
Autores Tópico(s)Scientific Research and Discoveries
ResumoNext article A Retrospective and Prospective Survey of the Monte Carlo MethodJohn H. HaltonJohn H. Haltonhttps://doi.org/10.1137/1012001PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAbout[1] B. V. Gnedenko, The Theory of Probability, Chelsea, New York, 1962 Google Scholar[2] A. S. Frolov and , N. N. Chentsov, Use of dependent tests in the Monte Carlo method for obtaining smooth curves, Proc. Sixth All-Union Conf. Theory Prob. and Math. Statist. (Vilnius, 1960) (Russian), Gosudarstv. Izdat. Politi cesk. i Naučn. Lit. Litovsk. SSR, Vilnius, 1962, 425–437 MR0196902 Google Scholar[3] J. H. Halton, A general formulation of the Monte Carlo method and "strong laws" for certain sequential schemes, MRC Tech. Summary Rep., 690, Mathematics Research Center, University of Wisconsin, Madison, 1966 Google Scholar[4] John H. Halton, A retrospective and prospective survey of the Monte Carlo method, SIAM Rev., 12 (1970), 1–63 10.1137/1012001 MR0258231 0193.46901 LinkISIGoogle Scholar[5] J. H. Halton, Masters Thesis, Studies in the theory of the Monte Carlo method, Doctoral thesis, Oxford University, 1960 Google Scholar[6] J. H. Halton, Sequential Monte Carlo, Proc. Cambridge Philos. Soc., 58 (1962), 57–78, revised in [78] MR0140173 0119.14904 CrossrefISIGoogle Scholar[7] William J. Pervin, Foundations of general topology, Academic Press Textbooks in Mathematics, Academic Press, New York, 1964xi+209 MR0165477 0117.39701 Google Scholar[8] W. Sierpinski, General Topology, University of Toronto Press, Toronto, Ontario, 1956 Google Scholar[9] J. H. Halton, On the generation of random sequences in Fréchet spaces, Rep., AMD 374/BNL 8996, Brookhaven National Laboratory, Upton, N.Y., 1965, reprinted in [4] Google Scholar[10] J. F. Koksma, A general theorem from the theory of uniform distribution modulo 1, Mathematica, Zutphen. B., 11 (1942), 7–11, (In Dutch.) MR0015094 Google Scholar[11] J. P. Bertrandias, Calculation of an integral by means of the sequence $X_{n}=An$. Evaluation of the error, Publ. Inst. Statist. Univ. Paris, 9 (1960), 335–357 Google Scholar[12] C. B. Haselgrove, A method for numerical integration, Math. Comp., 15 (1961), 323–337 MR0146960 0209.46902 CrossrefGoogle Scholar[13] E. Hlawka, Functions of bounded variation in the theory of uniform distribution, Ann. Mat. Pura Appl., IV, 54 (1961), 325–334, (In German.) CrossrefGoogle Scholar[14] E. Hlawka, On the approximate computation of multiple integrals, Monatsh. Math., 66 (1962), 140–151 CrossrefGoogle Scholar[15] S. K. Zaremba, Good lattice points, discrepancy, and numerical integration, Ann. Mat. Pura Appl. [4], 73 (1966), 293–317 MR0218018 CrossrefGoogle Scholar[16] J. M. Hammersley and , K. W. Morton, Discussion, R. S. S. symposium on Monte Carlo methods, J. Roy. Statist. Soc. Ser. B, 16 (1954), 61–75, reprinted in [4] Google Scholar[17] J. M. Hammersley and , D. C. Handscomb, Monte Carlo methods, Methuen & Co. Ltd., London, 1965vii+178 MR0223065 0121.35503 Google Scholar[18] John H. Curtiss, Sampling methods applied to differential and difference equations, Proceedings, Seminar on Scientific Computation, November, 1949, International Business Machines Corp., New York, N. Y., 1950, 87–109, reprinted in [4] MR0043564 Google Scholar[19] Lord Rayleigh, On James Bernoulli's theorem in probabilities, Philos. Mag., 47 (1899), 246–251 CrossrefGoogle Scholar[20] "Student", Probable error of a correlation coefficient, Biometrika, 6 (1908), 302–310 CrossrefGoogle Scholar[21] R. Courant, , K. O. Friedrichs and , H. Lewy, On the partial difference equations of mathematical physics, Math. Ann., 100 (1928), 32–74, English transl., Courant Institute of Mathematical Sciences, New York University, 1956 CrossrefGoogle Scholar[22] A. N. Kolmogorov, On the analytic method in probability theory, Math. Ann., 104 (1931), 415–458 CrossrefGoogle Scholar[23] G. Pólya, On a random walk in a network of streets, Colloque consacré à la théorie des probabilités. I: Conférences d'introduction, Actualités scientifiques et industrielles, no. 734, Hermann, Paris, 1938, 25–44 Google Scholar[24] Nicholas Metropolis and , S. Ulam, The Monte Carlo method, J. Amer. Statist. Assoc., 44 (1949), 335–341, reprinted in [4] MR0031341 0033.28807 CrossrefISIGoogle Scholar[25] S. Ulam, On the Monte Carlo method, Proceedings of a Second Symposium on Large-Scale Digital Calculating Machinery, 1949, Harvard University Press, Cambridge, Mass., 1951, 207–212, reprinted in [4] MR0044897 Google Scholar[26] G. W. King, The Monte Carlo method as a natural mode of expression in operations research, J. Operations Res. Soc. Amer., 1 (1953), 46–51, reprinted in [4] CrossrefISIGoogle Scholar[27] J. M. Hammersley and , K. W. Morton, Poor man's Monte Carlo, J. Roy. Statist. Soc. Ser. B., 16 (1954), 23–38; discussion 61–75, reprinted in [4] MR0064475 0055.36901 Google Scholar[28] K. D. Tocher, The application of automatic computers to sampling experiments, J. Roy. Statist. Soc. Ser. B., 16 (1954), 39–61; discussion 61–75, reprinted in [4] MR0064476 0055.36902 Google Scholar[29] W. F. Bauer, The Monte Carlo method, J. Soc. Indust. Appl. Math., 6 (1958), 438–451, reprinted in [4] 10.1137/0106028 MR0098455 0084.34601 LinkISIGoogle Scholar[30] J. M. Hammersley, Monte Carlo methods for solving multivariable problems, Ann. New York Acad. Sci., 86 (1960), 844–874 (1960), reprinted in [4] MR0117870 0111.12405 ISIGoogle Scholar[31] H. Kahn, Applications of Monte Carlo, Rep., RM 1237-AEC, RAND Corp., Santa Monica, California, 1956 Google Scholar[32] H. A. Meyer, Symposium on Monte Carlo Methods, John Wiley, New York, 1956 0070.13402 Google Scholar[33] Yu. A. Shreider, Method of statistical testing. Monte Carlo method, Translated by Scripta Technica Inc, Elsevier Publishing Co., Amsterdam-London-New York, 1964ix+303 MR0182124 0192.25609 Google Scholar[34] R. Kraft and , C. J. Wensrich, Monte Carlo methods—A bibliography covering the period 1947 to June 1961, Rep., UCRL 6581, Lawrence Radiation Laboratory, University of California, Berkeley, 1961 Google Scholar[35] John H. Halton, On the relative merits of correlated and importance sampling for Monte Carlo integration, Proc. Cambridge Philos. Soc., 61 (1965), 497–498, reprinted in [4] MR0174166 0125.08603 CrossrefISIGoogle Scholar[36] John H. Halton, An interpretation of negative probabilities, Proc. Cambridge Philos. Soc., 62 (1966), 83–86, reprinted in [4] MR0185794 0138.12106 CrossrefISIGoogle Scholar[37] M. S. Bartlett, Negative probability, Proc. Cambridge Philos. Soc., 41 (1945), 71–73 MR0011893 0063.00227 CrossrefISIGoogle Scholar[38] J. M. Hammersley and , K. W. Morton, A new Monte Carlo technique: antithetic variates, Proc. Cambridge Philos. Soc., 52 (1956), 449–475, reprinted in [4] MR0080984 0071.35404 CrossrefGoogle Scholar[39] J. M. Hammersley and , J. G. Mauldon, General principles of antithetic variates, Proc. Cambridge Philos. Soc., 52 (1956), 476–481, reprinted in [4] MR0081038 0071.35501 CrossrefGoogle Scholar[40] D. C. Handscomb, Proof of the antithetic variate theorem for $n>2$, Proc. Cambridge Philos. Soc., 54 (1958), 300–301, reprinted in [4] 0081.13901 CrossrefGoogle Scholar[41] K. W. Morton, A generalisation of the antithetic variate technique for evaluating integrals, J. Math. Phys., 36 (1957), 289–293, reprinted in [4] MR0089484 0091.14505 Google Scholar[42] J. H. Halton and , D. C. Handscomb, A method for increasing the efficiency of Monte Carlo integration, J. Assoc. Comput. Mach., 4 (1957), 329–340, reprinted in [4] MR0094891 CrossrefISIGoogle Scholar[43] D. C. Handscomb, A rigorous lower bound for the efficiency of a Monte Carlo technique, Proc. Cambridge Philos. Soc., 60 (1964), 357–358, reprinted in [4] MR0162351 0239.65006 CrossrefISIGoogle Scholar[44] P. J. Laurent, Remark on the evaluation of integrals by the Monte Carlo method, C. R. Acad. Sci. Paris, 253 (1961), 610–612 Google Scholar[45] S. M. Ermakov and , V. G. Zolotukhin, Polynomial approximations and the Monte Carlo method, Teor. Verojatnost. i Primenen., 5 (1960), 473–476, (English summary.) MR0134837 0147.17601 Google Scholar[46] D. C. Handscomb, Remarks on a Monte Carlo integration method, Numer. Math., 6 (1964), 261–268, reprinted in [4] 10.1007/BF01386074 MR0170451 0239.65032 CrossrefGoogle Scholar[47] Hale F. Trotter and , John W. Tukey, H. A. Meyer, Conditional Monte Carlo for normal samples, Symposium on Monte Carlo methods, University of Florida, 1954, John Wiley and Sons, Inc., New York, 1956, 64–79 MR0079825 Google Scholar[48] Harvey J. Arnold, , Bradley D. Bucher, , Hale F. Trotter and , John W. Tukey, H. A. Meyer, Monte Carlo techniques in a complex problem about normal samples, Symposium on Monte Carlo methods, University of Florida, 1954, John Wiley and Sons, Inc., New York, 1956, 80–88 MR0079826 Google Scholar[49] J. M. Hammersley, Conditional Monte Carlo, J. Assoc. Comput. Mach., 3 (1956), 73–76, reprinted in [4] MR0078031 CrossrefISIGoogle Scholar[50] J. G. Wendel, Groups and conditional Monte Carlo, Ann. Math. Statist, 28 (1957), 1048–1052, reprinted in [4] MR0093889 0078.33505 CrossrefISIGoogle Scholar[51] Yu. A. Shreider, The Monte Carlo method. The method of statistical trials, Edited by Ju. A. Srei˘der. Translated from the Russian by G. J. Tee. Translation edited by D. M. Parkyn. International Series of Monographs in Pure and Applied Mathematics, Vol. 87, Pergamon Press, Oxford, 1966xii+381 pp. (loose errata) MR0211577 0139.35602 Google Scholar[52] M. J. D. Powell and , J. Swann, Weighted uniform sampling—a Monte Carlo technique for reducing variance, J. Inst. Math. Appl., 2 (1966), 228–236 MR0207170 0144.42001 CrossrefGoogle Scholar[53] S. K. Zaremba, The mathematical basis of Monte Carlo and quasi-Monte Carlo methods., SIAM Rev., 10 (1968), 303–314, reprinted in [4] 10.1137/1010056 MR0233489 LinkISIGoogle Scholar[54] R. E. Edwards, Functional analysis. Theory and applications, Holt, Rinehart and Winston, New York, 1965xiii+781 MR0221256 0182.16101 Google Scholar[55] L. V. Kantorovich and , G. P. Akilov, Functional analysis in normed spaces, Translated from the Russian by D. E. Brown. Edited by A. P. Robertson. International Series of Monographs in Pure and Applied Mathematics, Vol. 46, The Macmillan Co., New York, 1964xiii+771 MR0213845 0127.06104 Google Scholar[56] Kôsaku Yosida, Functional analysis, Die Grundlehren der Mathematischen Wissenschaften, Band 123, Academic Press Inc., New York, 1965xi+458 MR0180824 0126.11504 CrossrefGoogle Scholar[57] Marvin Marcus and , Henryk Minc, A survey of matrix theory and matrix inequalities, Allyn and Bacon Inc., Boston, Mass., 1964xvi+180 MR0162808 0126.02404 Google Scholar[58] L. Mirsky, An introduction to linear algebra, Oxford, at the Clarendon Press, 1955xi+433 MR0074364 0066.26305 Google Scholar[59] P. M. Anselone, L. B. Rall, Convergence and error bounds for approximate solutions of integral and operator equationsError in Digital Computation, Vol. 2 (Proc. Sympos. Math. Res. Center, U.S. Army, Univ. Wisconsin, Madison, Wis., 1965), Wiley, New York, 1965, 231–252 MR0189277 0158.34102 Google Scholar[60] K. E. Atkinson, Extensions of the Nyström method for the numerical solution of linear integral equations of the second kind, MRC Tech. Summary Rep., 686, Mathematics Research Center, University of Wisconsin, Madison, 1966 Google Scholar[61] J. H. Halton, Least-squares Monte Carlo methods for solving linear systems of equations, Rep., AMD 388/BNL 9678, Brookhaven National Laboratory, Upton, New York, 1965 Google Scholar[62] George E. Forsythe and , Cleve B. Moler, Computer solution of linear algebraic systems, Prentice-Hall Inc., Englewood Cliffs, N.J., 1967xi+148 MR0219223 0154.40401 Google Scholar[63] Alston S. Householder, The theory of matrices in numerical analysis, Blaisdell Publishing Co. Ginn and Co. New York-Toronto-London, 1964xi+257 MR0175290 0161.12101 Google Scholar[64] Richard S. Varga, Matrix iterative analysis, Prentice-Hall Inc., Englewood Cliffs, N.J., 1962xiii+322 MR0158502 0133.08602 Google Scholar[65] J. H. Wilkinson, Rounding errors in algebraic processes, Prentice-Hall Inc., Englewood Cliffs, N.J., 1963vi+161, and H.M. Stationery Office, London, 1963 MR0161456 1041.65502 Google Scholar[66] J. H. Wilkinson, The algebraic eigenvalue problem, Clarendon Press, Oxford, 1965xviii+662 MR0184422 0258.65037 Google Scholar[67] George E. Forsythe and , Richard A. Leibler, Matrix inversion by a Monte Carlo method, Math. Tables and Other Aids to Computation, 4 (1950), 127–129, 5 (1951), p. 55; reprinted in [4] MR0038138 CrossrefGoogle Scholar[68] Wolfgang Wasow, Random walks and the eigenvalues of elliptic difference equations, J. Research Nat. Bur. Standards., 46 (1951), 65–73, reprinted in [4] MR0055032 CrossrefISIGoogle Scholar[69] W. R. Wasow, A note on the inversion of matrices by random walks, Math. Tables and Other Aids to Computation, 6 (1952), 78–81, reprinted in [4] MR0055033 0048.11303 CrossrefGoogle Scholar[70] H. P. Edmundson, Monte Carlo matrix inversion and recurrent events, Math. Tables and Other Aids to Computation, 7 (1953), 18–21, reprinted in [4] MR0055034 0050.13001 CrossrefGoogle Scholar[71] J. H. Curtiss, "Monte Carlo" methods for the iteration of linear operators, J. Math. Physics, 32 (1954), 209–232, reprinted in [4] MR0059622 0055.11301 CrossrefISIGoogle Scholar[72] R. E. Cutkosky, A Monte Carlo method for solving a class of integral equations, J. Research Nat. Bur. Standards, 47 (1951), 113–115, reprinted in [4] MR0045479 CrossrefISIGoogle Scholar[73] E. S. Page, The Monte Carlo solution of some integral equations, Proc. Cambridge Philos. Soc., 50 (1954), 414–425, reprinted in [4] MR0064496 0055.35805 CrossrefISIGoogle Scholar[74] Ascher Opler, Monte Carlo matrix calculation with punched card machines, Math. Tables and Other Aids to Computation, 5 (1951), 115–120 MR0043557 0044.33203 CrossrefGoogle Scholar[75] Andrew W. Marshall, H. A. Meyer, The use of multistage sampling schemes in Monte Carlo computations, Symposium on Monte Carlo methods, University of Florida, 1954, John Wiley and Sons, Inc., New York, 1956, 123–140 MR0079827 Google Scholar[76] A. Wald, Sequential Analysis, John Wiley, New York, 1950 Google Scholar[77] J. H. Halton, On the strong convergence of linear averages, MRC Tech. Summary Rep., 719, Mathematics Research Center, University of Wisconsin, Madison, 1966 Google Scholar[78] J. H. Halton, Sequential Monte Carlo (revised), MRC Tech. Summary Rep., 816, Mathematics Research Center, University of Wisconsin, Madison, 1967, reprinted in [4] Google Scholar[79] M. D. Donsker and , M. Kac, A sampling method for determining the lowest eigenvalue and the principal eigenfunction of Schrödinger's equation, J. Research Nat. Bur. Standards, 44 (1950), 551–557, reprinted in [4] MR0045473 CrossrefISIGoogle Scholar[80] M. Kac and , M. Cohen, A statistical method for determining the lowest eigenvalue of Schrödinger's equation, Rep., 1553, National Bureau of Standards, Washington, D.C., 1952 Google Scholar[81] Wolfgang Wasow, On the mean duration of random walks, J. Research Nat. Bur. Standards, 46 (1951), 462–471 MR0047962 CrossrefISIGoogle Scholar[82] Wolfgang Wasow, On the duration of random walks, Ann. Math. Statistics, 22 (1951), 199–216 MR0054883 0054.05902 CrossrefISIGoogle Scholar[83] W. R. Wasow, Probabilistic methods for the numerical solution of some problems in analysis and algebra, Univ. Ruma 1st. Naz. Alta Mat. Rend. Mat. e Appl., 11 (1953), 336–346 Google Scholar[84] Mervin E. Muller, Some continuous Monte Carlo methods for the Dirichlet problem, Ann. Math. Statist., 27 (1956), 569–589 MR0088786 0075.28902 CrossrefISIGoogle Scholar[85] Mervin E. Muller, On discrete operators connected with the Dirichlet problem, J. Math. Phys., 35 (1956), 89–113 MR0077780 0071.11905 Google Scholar[86] R. Fortet, On the estimation of an eigenvalue by an additive functional of a stochastic process, with special reference to the Kac-Donsker method, J. Research Nat. Bur. Standards, 48 (1952), 68–75, reprinted in [4] MR0048165 CrossrefISIGoogle Scholar[87] N. R. Steenberg, the absorption of high energy radiation, a Monte Carlostudy. I: Rectangular geometry. II: Spherical geometry. III: Density and transparency distributions, Canad. J. phys., 41 (1963), 632–650, 651–663, 2206–2240, reprinted in [4] ISIGoogle Scholar[88A] N. Metropolis, , R. Bivins, , M. Storm, , Anthony Turkevich, , J. M. Miller and , G. Friedlander, Monte Carlo calculations on intranuclear cascades. I. Low-energy studies, Phys. Rev. (2), 110 (1958), 185–203, reprinted in [4] 10.1103/PhysRev.110.185 MR0093361 CrossrefISIGoogle Scholar[88B] N. Metropolis, , R. Bivins, , M. Storm, , J. M. Miller, , G. Friedlander and , Anthony Turkevich, Monte Carlo calculations on intranuclear cascades. II. High-energy studies and pion processes, Phys. Rev. (2), 110 (1958), 204–219, reprinted in [4] 10.1103/PhysRev.110.204 MR0093362 CrossrefISIGoogle Scholar[89A] Charles W. King, Stochastic methods in quantum mechanics, Proceedings, Seminar on Scientific Computation, November, 1949, International Business Machines Corp., New York, N. Y., 1950, 42–48, reprinted in [4] MR0051005 Google Scholar[89B] Gilbert W. King, Further remarks on stochastic methods in quantum mechanics, Proceedings, Computation Seminar, December 1949, International Business Machines Corp., New York, N. Y., 1951, 92–94, reprinted in [4] MR0054884 Google Scholar[90] M. H. Kalos, Monte Carlo calculations of the ground state of three- and four-body nuclei, Phys. Rev. (2), 128 (1962), 1791–1795, reprinted in [4] 10.1103/PhysRev.128.1791 MR0144693 CrossrefGoogle Scholar[91] M. H. Kalos, Stochastic wave-function for atomic helium, J. Comp. Phys., 1 (1966), 257–275, reprinted in [4] 10.1016/0021-9991(66)90006-4 CrossrefGoogle Scholar[92] G. W. King, Stochastic methods in statistical mechanicsMonte Carlo Methods, National Bureau of Standards Applied Mathematics Series, No.12, U.S. Government Printing Office, Washington, D.C., 1951, 12–18, reprinted in [4] Google Scholar[93] N. Metropolis, Equation of state calculations by fast computing machines, J. Chem. Phys., 21 (1953), 1087–1092, reprinted in [4] 10.1063/1.1699114 CrossrefISIGoogle Scholar[94] J. B. Ehrman, , L. D. Fosdick and , D. C. Handscomb, Computation of order parameters in an Ising lattice by the Monte Carlo method, J. Mathematical Phys., 1 (1960), 547–558, reprinted in [4] 10.1063/1.1703692 MR0117974 0097.44801 CrossrefISIGoogle Scholar[95] D. C. Handscomb, The Monte Carlo method in quantum statistical mechanics, Proc. Cambridge Philos. Soc., 58 (1962), 594–598, reprinted in [4] MR0145925 0119.15302 CrossrefISIGoogle Scholar[96] D. C. Handscomb, A Monte Carlo method applied to the Heisenberg ferromagnet, Proc. Cambridge Philos. Soc., 60 (1964), 115–122, reprinted in [4] MR0160587 CrossrefISIGoogle Scholar[97] J. R. Beeler, Jr. and , J. A. Delaney, Order-disorder events produced by single vacancy migration, Phys. Rev., 130 (1963), 962–971, reprinted in [4] 10.1103/PhysRev.130.962 CrossrefISIGoogle Scholar[98] Lloyd D. Fosdick, Numerical estimation of the partition function in quantum statistics., J. Mathematical Phys., 3 (1962), 1251–1264, reprinted in [4] 10.1063/1.1703867 MR0147211 0113.45701 CrossrefISIGoogle Scholar[99A] M. J. Berger and , J. Doggett, Reflection and transmission of gamma radiation by barrieris. I: Monte Carlo calculation by a collision-density method, J. Res. Nat. Bur. Standards, 55 (1955), 343–350, reprinted in [4] 0074.44206 CrossrefISIGoogle Scholar[99B] M. J. Berger and , J. Doggett, Reflection and transmission of gamma radiation by barrieris. III. Semianalytic Monte Carlo calculation, J. Res. Nat. Bur. Standards, 56 (1956), 89–98, reprinted in [4] 0074.44301 CrossrefISIGoogle Scholar[100] H. Kahn, Random sampling (Monte Carlo) techniques in neutron attenuation problems, Nucleonics, 6 (1950), 27–33, no. 6, pp. 60–65; reprinted in [4] Google Scholar[101] A. S. Householder, Neutron age calculations in water, graphite, and tissueMonte Carlo Methods, National Bureau of Standards Applied Mathematics Series, No. 12, U. S. Government Printing Office, Washington, D.C., 1951, 6–8, reprinted in [4] Google Scholar[102] W. C. De Marcus and , L. Nelson, Methods of probabilities in chains applied to particle transmission through matterMonte Carlo Methods, National Bureau of Standards Applied Mathematics Series, No. 12, U.S. Government Printing Office, Washington, D.C., 1951, 9–11, reprinted in [4] Google Scholar[103] K. W. Morton, Scaling neutron tracks in Monte Carlo shielding calculations, J. Nuclear Energy, 5 (1957), 320–324, reprinted in [4] Google Scholar[104] M. H. Kalos, Importance sampling in Monte Carlo shielding calculations. I. Neutron penetration through thick hydrogen slabs, Nuclear Sci. Engrg., 16 (1963), 227–234, reprinted in [4] ISIGoogle Scholar[105] J. Spanier, A unified approach to Monte Carlo methods and an application to a multigroup calculation of absorption rates, SIAM Rev., 4 (1962), 115–134, reprinted in [4] 10.1137/1004030 MR0137282 0106.13501 LinkISIGoogle Scholar[106] F. T. Wall, Self-avoiding walks as a model of coiling polymer molecules, J. Chem Phys., (), , Statistical computation of mean dimensions of macromolecules, 22 (1954), pp. 1036–1041, 23 (1955), pp. 913–921, 2314–2321, 26 (1957), pp. 1742–1749; Improved statistical method for computing mean dimensions of polymer molecules, 27 (1957), pp. 186–188; New method for the statistical computation of polymer dimensions, 30 (1959), pp. 634–637; Statistical computation of radii of gyration and mean internal dimensions of polymer molecules, 30 (1959), pp. 637–640; Monte Carlo procedures for generation of non-intersecting chains, 37 (1962), pp. 1461–1465; Monte Carlo study of coiling-type molecules. I: Macromolecular configurations. II: Statistical thermodynamics, 38 (1963), pp. 2220–2227, 2228–2232, 39 (1963), pp. 1900; reprinted in [4] Google Scholar[107] J. G. Hoffman, , N. Metropolis and , V. Gardiner, Study of tumor cell populations by Monte Carlo methods, Science, 122 (1955), 465–466, Digital computer studies of cell multiplication by Monte Carlo methods, J. Nat. Cancer Inst., 17 (1956), pp. 175–188; reprinted in [4] CrossrefISIGoogle Scholar[108] P. H. Leslie and , J. C. Gower, The properties of a stochastic model for two competing species, Biometrika, 45 (1958), 316–330, 46 (1959), p. 279; reprinted in [4] MR0102448 0087.34501 CrossrefISIGoogle Scholar[109] E. S. Page, On Monte Carlo methods in congestion problems. I: Searching for an optimum in discrete situations, Operations Res., 13 (1965), 291–299, reprinted in [4] 0127.10005 CrossrefISIGoogle Scholar[110] A. Blumstein, A Monte Carlo analysis of the Ground Controlled Approach system, Operations Res., 5 (1957), 397–408, reprinted in [4] CrossrefISIGoogle Scholar[111] Jillian Beardwood, , J. H. Halton and , J. M. Hammersley, The shortest path through many points, Proc. Cambridge Philos. Soc., 55 (1959), 299–327, reprinted in [4] MR0109316 0118.35601 CrossrefGoogle Scholar[112] J. H. Halton and , A. D. Spaulding, Error rates in differentially coherent phase systems in non-Gaussian noise, IEEE Trans. Comm. Tech., COM-14 (1966), 594–601, reprinted in [4] 10.1109/TCOM.1966.1089383 CrossrefISIGoogle Scholar[113] H. W. Bertini, Monte Carlo calculations on intranuclear cascades, Reps., ORNL 3360, 3383, 3433, Oak Ridge National Laboratories, Oak Ridge, Tennessee, 1963 Google Scholar[114] M. N. Rosenbluth and , A. W. Rosenbluth, Further results on Monte Carlo equations of state, J. Chem. Phys., 22 (1954), 881–884 10.1063/1.1740207 CrossrefISIGoogle Scholar[115] W. W. Wood, Monte Carlo equation of state of molecules interacting with the Lennard-Jones and hard sphere potentials, J. Chem. Phys., 27 (1957), 720–733, 1207–1208, Nuovo Cimento Suppl. Ser. 10, 9 (1958), pp. 133–143 ISIGoogle Scholar[116] W. W. Wood and , J. D. Jacobson, Monte Carlo calculations in statistical mechanics, Proc. Western Joint Computer Conference, 1959, 261–269 Google Scholar[117] Z. W. Salsburg, , J. D. Jacobson, , W. Fickett and , W. W. Wood, Application of the Monte Carlo method to the lattice gas model. I: Two-dimensional triangular lattice, J. Chem. Phys., 30 (1959), 65–72 10.1063/1.1729945 CrossrefISIGoogle Scholar[118A] B. J. Alder and , T. E. Wainwright, Studies in molecular dynamics. I. General method, J. Chem. Phys., 31 (1959), 459–466 10.1063/1.1730376 MR0115313 CrossrefISIGoogle Scholar[118B] B. J. Alder and , T. E. Wainwright, Studies in molecular dynamics. II. Behavior of a small number of elastic spheres, J. Chem. Phys., 33 (1960), 1439–1451 10.1063/1.1731425 MR0115314 CrossrefISIGoogle Scholar[118C] B. J. Alder, Studies in molecular dynamics. III. A mixture of hard spheres, J. Chem. Phys., 40 (1964), 2724–2730 10.1063/1.1725587 MR0167285 CrossrefISIGoogle Scholar[119] Z. W. Salsburg and , W. W. Wood, Equation of state of classical hard spheres at high density, J. Chem. Phys., 37 (1962), 798–804 10.1063/1.1733163 CrossrefISIGoogle Scholar[120] D. A. Chesnut and , Z. W. Salsburg, Monte Carlo procedure for statistical mechanical calculations in a grand canonical ensemble of lattice systems, J. Chem. Phys., 38 (1963), 2861–2875 10.1063/1.1733614 CrossrefISIGoogle Scholar[121] D. A. Chesnut and , Z. W. Salsburg, Monte Carlo calculations for the two-dimensional triangular lattice gas: supercritical region, J. Chem. Phys., 39 (1963), 2081–2084 10.1063/1.1734585 CrossrefISIGoogle Scholar[122] E. B. Smith and , K. R. Lea, Thermodynamic properties of mixtures of hard sphere molecules by Monte Carlo methods, Trans. Faraday Soc., 59 (1963), 1535–1543 10.1039/tf9635901535 CrossrefISIGoogle Scholar[123] Lloyd D. Fosdick, Calculation of order parameters in a binary alloy by the Monte Carlo method, Phys. Rev. (2), 116 (1959), 565–573 10.1103/PhysRev.116.565 MR0110262 CrossrefISIGoogle Scholar[124] P. A. Flinn and , G. M. McManus, Monte Carlo calculation of the order-disorder transformation in the body-centered cubic lattice, Phys. Rev. (2), 124 (1961), 54–59 10.1103/PhysRev.124.54 MR0129915 CrossrefISIGoogle Scholar[125] J. R. Beeler, Jr., High speed computer experiment techniques: Many particle systems, Rep., GEMP-252, General Electric Co., Schenectady, New York, 1963 Google Scholar[126] L. D. Fosdick, Monte Carlo computations on the Ising latticeMethods in Computational Physics, Vol. I, Academic Press, New York, 1963, 245–280 Google Scholar[127] M. N. Rosenbluth and , A. W. Rosenbluth, Monte Carlo calculation of the average extension of molecular chains, J. Chem. Phys., 23 (1955), 356–359 10.1063/1.1741967 CrossrefISIGoogle Scholar[128] P. J. Marcer, Masters Thesis, Further investigations of the mean dimensions of non-intersecting chains on simple lattices, Doctoral thesis, Oxford University, Oxford, 1960 Google Scholar[129] M. A. D. Fluendy and , E. B. Smith, The application of Monte Carlo methods to physicochemical problems, Quart. Rev. Chem. Soc., London, 16 (1962), 241–266 10.1039/qr9621600241 CrossrefISIGoogle Scholar[130] M. A. D. Fluendy, Calculation of cyclization probabilities and other configuration properties of alkane-type chains by a Monte Carlo method, Trans. Faraday Soc., 59 (1963), 1681–1694 10.1039/tf9635901681 CrossrefISIGoogle Scholar[131] N. C. Blais and , D. L. Bunker, Monte Carlo calculations (Reaction kinetics), J. Chem. Phys., 37 (1962), 2713–2720, 39 (1963), pp. 315–322 10.1063/1.1733079 CrossrefISIGoogle Scholar[132] I. M. Gelfand and , A. M. Yaglom, Integration in function spaces and its application to quantum physics, Uspehi Mat. Nauk (N.S.), 11 (1956), 77–114 MR0078910 Google Scholar[133] I. M. Gelfand and , N. N. Chentsov, The evaluation of Wiener integrals, Zh. Eksper. Teoret Fiz., 31 (1956), 1106–1107 Google Scholar[134] I. M. Gelfand, , A. S. Frolov and , N. N. Chentsov, The computation of continuous integrals by the Monte Carlo method, Izv. Vysš. Učebn. Zaved. Matematika, 1958 (1958), 32–45 MR0135694 Google Scholar[135] Lloyd D. Fosdick, The Monte Carlo method in quantum statistics, SIAM Rev., 10 (1968), 315–328 10.1137/1010057 MR0233488 LinkISIGoogle Scholar[136] E. M. Gerlbard and , J. Spanier, Use of superposition principle in Monte Carlo resonance escape calculations, Trans. Amer. Nuclear Soc., 7 (1964), 259–260 Google Scholar[137] I. B. Motskus, On a method of distributing random trials for solving multi-extremal problems, Ž. Vyčisl. Mat. i Mat. Fiz., 4 (1964), 380–385 MR0177500 0202.49302 Google Scholar[138] I. Matyas, Random optimization, Avtomat. i Telemeh, 26 (1965), 246–253 MR0178974 0151.22802 Google Scholar[139] Ryszard Zieliński, On the Monte-Carlo evaluation of the extremal value of a function, Algorytmy, 2 (1965), 7–13 MR0184409 Google Scholar[140] A. Rényi, On the theory of random search, Bull. Amer. Math. Soc., 71 (1965), 809–828 MR0186481 0138.14706 CrossrefISIGoogle Scholar[141] B. Jansson, Masters Thesis, Random number generators, Doctoral thesis, Faculty of Mathematics and Natural Sciences, University of Stockholm, 1966 Google Scholar[142] T. E. Hull and , A. R. Dobell, Random number generators, SIAM Rev., 4 (1962), 230–254, reprinted in [4] 10.1137/1004061 MR0148202 0111.14701 LinkISIGoogle Scholar[143] J. H. Halton, On the generation of arbitrarily autocorrelated sequences of random variables from a sequence of independent random numbers, Rep., AMD-322, Brookhaven National Laboratory, Upton, N.Y., 1963 Google Scholar[144] E. S. Page, Pseudo-random elements for computers, Appl. Statist., 8 (1959), 124–131, reprinted in [4] MR0107956 CrossrefISIGoogle Scholar[145] J. von Neumann, Various techniques used in connection with random digitsMonte Carlo Methods, National Bureau of Standards Applied Mathematics Se
Referência(s)