Growth of Human Keratinocytes and Fibroblasts on Bacterial Cellulose Film
2006; American Chemical Society; Volume: 22; Issue: 4 Linguagem: Inglês
10.1021/bp060035o
ISSN8756-7938
AutoresNeeracha Sanchavanakit, W. Sangrungraungroj, Ruchadaporn Kaomongkolgit, Tanom Banaprasert, Prasit Pavasant, Muenduen Phisalaphong,
Tópico(s)Polysaccharides and Plant Cell Walls
ResumoBiotechnology ProgressVolume 22, Issue 4 p. 1194-1199 Article Growth of Human Keratinocytes and Fibroblasts on Bacterial Cellulose Film Neeracha Sanchavanakit, Neeracha Sanchavanakit Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, ThailandSearch for more papers by this authorWunwisa Sangrungraungroj, Wunwisa Sangrungraungroj Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, ThailandSearch for more papers by this authorRuchadaporn Kaomongkolgit, Ruchadaporn Kaomongkolgit Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, ThailandSearch for more papers by this authorTanom Banaprasert, Tanom Banaprasert Department of Otolaryngology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, ThailandSearch for more papers by this authorPrasit Pavasant, Prasit Pavasant Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, ThailandSearch for more papers by this authorMuenduen Phisalaphong, Corresponding Author Muenduen Phisalaphong [email protected] Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, ThailandDepartment of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand. Tel: 662–218-6875. Fax: 662–218-6877===Search for more papers by this author Neeracha Sanchavanakit, Neeracha Sanchavanakit Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, ThailandSearch for more papers by this authorWunwisa Sangrungraungroj, Wunwisa Sangrungraungroj Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, ThailandSearch for more papers by this authorRuchadaporn Kaomongkolgit, Ruchadaporn Kaomongkolgit Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, ThailandSearch for more papers by this authorTanom Banaprasert, Tanom Banaprasert Department of Otolaryngology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, ThailandSearch for more papers by this authorPrasit Pavasant, Prasit Pavasant Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, ThailandSearch for more papers by this authorMuenduen Phisalaphong, Corresponding Author Muenduen Phisalaphong [email protected] Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, ThailandDepartment of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand. Tel: 662–218-6875. Fax: 662–218-6877===Search for more papers by this author First published: 05 September 2008 https://doi.org/10.1021/bp060035oCitations: 89Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Thin films of bacterial cellulose (BC) from a nata de coco culture system were developed, characterized, and investigated for the growth of human keratinocytes and fibroblasts. The average pore diameter and total surface area of the dried BC films estimated by BET were 224 Å and 12.62 m2/g, respectively. With an film thickness of 0.12 mm, the average tensile strength and break strain of the dried films were 5.21 MPa and 3.75%, whereas those of the wet films were 1.56 MPa and 8.00%, respectively. The water absorption capacity of air-dried film was 5.09 g water/g dried films. For uses in the therapy of skin wounds, the potential biological mechanism of action of BC film was evaluated by using human keratinocytes and fibroblasts. Our results were the first direct demonstration that BC film supported the growth, spreading, and migration of human keratinocytes but not those of human fibroblasts. Expressions of E-cadherin and the α-3 chain of laminin confirmed the phenotype of human keratinocytes on BC film. References and Notes 1 Brown R. M. Bacterialcellulose. In Cellulose: Structural and Function Aspects; J. F. Kennedy, G. O. Phillips, P. A. Williams, Eds.; Ellis Horwood Ltd.: Chichester, 1989. 2 Iguchi, M.; Yamanaka, S.; Budhiono, A. Bacterial cellulose-a masterpiece of nature's arts. J. Mater. Sci. 2000, 35, 271–290. 3 Astley, O. M.; Chanliaud, E.; Donald, A. M.; Gidley, M. J. Structure of Acetobacter cellulose composites in the hydrated state. Biomacromolecules 2001, 29, 193–202. 4 Miyamoto, T.; Takahashi, S.; Ito, H.; Inagaki, H.; Noishiki, Y. Tissue biocompatibility of cellulose and its derivatives. J. Biomed. Mater. Res. 1989, 23, 125–133. 5 Ross, P.; Mayer, R.; Benziman, M. Cellulose biosynthesis and function in bacteria. Microbiol. Res. 1991, 55, 35–58. 6 Bae, S.; Shoda, M. Bacterial cellulose production by fed-batch fermentation in molasses medium. Biotechnol. Prog. 2004, 20, 1366–1371. 7 Svensson, A.; Nicklasson, E.; Harrah, T.; Panilaitis, B.; Kaplan, D. L.; Brittberg, M.; Gatenholm, P. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 2005, 26, 419–431. 8 Fontana, J. D.; Souza, A. M. De; Fontana, C. K.; Torriani, I. L.; Moreschi, J. C.; Gallotti, B. J.; Souza, S. J. De; Narcisco, G. P.; Bichara, J. A.; Farah, L. F. X. Acetobacter cellulose pellicle as a temporary skin substitute. Appl. Biochem. Biotechnol. 1990, 24/25, 253–264. 9 Geyer, U.; Heinze, Th.; Stein, A.; Klemm, D.; Marsch, S.; Schumann, D.; Schmauder, H.-P. Formation derivatization and application of bacterial cellulose. Int. J. Biol. Macromol. 1994, 16, 343–347. 10 Klemm, D.; Schumann, D.; Udhardt, U.; Marsch, S. Bacterial synthesized cellulose-artificial blood vessels for microsurgery. Prog. Polym. Sci. 2001, 26, 1561–1603. 11 Jonas, R., Farah L. F. Productionand application of microbial cellulose. Polym. Degrad. Stab. 1998, 59, 101–106. 12 Wongpanit, P.; Sanchavanakit, N.; Pavasant, P.; Supaphol, P.; Tokura, S.; Rujiravanit, R. Preparation and characterization of microwave-treated carboxymethyl chitin and carboxymethyl chitosan films for potential use in wound care application. Macromol. Biosci. 2005, 5, 1001–1012. 13 Lee, Y.; Kouvroukoglou, S.; McIntire, L. V.; Zygourakis, K. A cellular automaton model for the proliferation of migrating contact-inhibited cells. Biophys. J. 1995, 69, 1284–1298. 14 Masaoka, S.; Ohe, T.; Sakota, N. Production of cellulose from glucose by Acetobacter xylinum. J. Ferment. Bioeng. 1993, 75 (1), 18–22. 15 Nishi, Y.; Uryu, M.; Yamanaka, S.; Watanabe, K.; Kitamura, N.; Iguchi, M. The structure and mechanical properties of sheets prepared from bacterial cellulose. Part 2: Improvement of the mechanical properties of sheets and their applicability to diaphragms of electroacoustic transducers. J. Mater. Sci. 1990, 25, 2997–3001. 16 Vandamme, E. J.; De Baets, S.; Vanbaelen, A.; Joris, K.; De Wulf, P. Improved production of bacterial cellulose and its application potential. Polym. Degrad. Stab. 1998, 93–99. 17 Czaja, W.; Krystynowicz, A.; Bielecki, S.; Brown, R. M., Jr. Microbial cellulose-the natural power to heal wounds. Biomaterials2006, 27, 145–151. 18 Haddow, D. B.; Steele, D. A.; Short, R. D.; Dawson, R. A.; MacNeil, S. Plasma-polymerized surfaces for culture of human keratinocytes and transfer of cells to an in vitro wound-bed model. J. Biomed. Mater. Res. A 2003, 64, 80–87. 19 Sugarman B. J.; Aggarwal, B. B.; Hass, P. E. Recombinant human tumor necrosis factor-alpha: effects on proliferation of normal and transformed cells in vitro. Science 1985, 230, 943–945. 20 Mariappan, M. R.; Williams, J. G.; Prager, M. D.; Eberhart, R. C. "Engineering" the wound-healing process. IEEE Eng. Med. Biol. Mag. 1999, 18, 22–26. 21 Roy, P.; Petroll, W. M.; Cavanagh, H. D.; Chuong, C. J.; Jester, J. V. An in vitro force measurement assay to study the early mechanical interaction between corneal fibroblasts and collagen matrix. Exp. Cell. Res. 1997, 232, 106–17. 22 Scully, C.; Bagan, J. V.; Black, M.; Carrozzo, M.; Eisen, D.; Escudier, M.; Farthing, P.; Kuffer, R.; Lo Muzio, L.; Mignogna, M.; Porter, S. R. Epithelial biology. Oral Dis. 2005, 11, 58–71. 23 Takeichi, M.; Hatta, K.; Nose, A.; Nagafuchi, A. Identification of a gene family of cadherin cell adhesion molecules. Cell. Differ. Dev. 1988, 25 Suppl, 91–94. 24 Butz, S.; Kemler, R. Distinct cadherin-catenin complexes in Ca(2+)-dependent cell-cell adhesion. FEBS Lett. 1994, 355, 195–200. 25 Gumbiner B. M. Celladhesion: the molecular basis of tissue architecture and morphogenesis. Cell 1996, 84, 345–357. 26 Timpl, R.; Brown, J. C. Supramolecular assembly of basement membranes. Bioessays 1996, 18, 123–132. 27 Timpl, R.; Rohde, H.; Robey, P. G.; Rennard, S. I.; Foidart, J. M.; Martin, G. R. Laminin-a glycoprotein from basement membranes. J. Biol. Chem. 1979, 254, 9933–9937. 28 Sasaki, T.; Fassler, R.; Hohenester, E. Laminin: the crux of basement membrane assembly. J. Cell. Biol. 2004, 164, 959–963. 29 Ryan, M. C.; Lee, K.; Miyashita, Y.; Carter, W. G. Targeted disruption of the LAMA3 gene in mice reveals abnormalities in survival and late stage differentiation of epithelial cells. J. Cell. Biol. 1999, 145, 1309–1323. 30 Nguyen, B. P.; Ryan, M. C.; Gil, S. G.; Carter, W. G. Deposition of laminin 5 in epidermal wounds regulates integrin signaling and adhesion. Curr. Opin. Cell Biol. 2000, 12, 554–562. Citing Literature Volume22, Issue42006Pages 1194-1199 ReferencesRelatedInformation
Referência(s)