Artigo Revisado por pares

Conversion of α‐ketoglutarate into L‐glutamic acid with urea as ammonium source using multienzyme systems and dextran‐NAD + immobilized by microencapsulation within artificial cells in a bioreactor

1988; Wiley; Volume: 32; Issue: 3 Linguagem: Inglês

10.1002/bit.260320315

ISSN

1097-0290

Autores

Kang Fu Gu, Thomas Ming Swi Chang,

Tópico(s)

Diabetes and associated disorders

Resumo

Urea could be effectively converted into L-glutamic acid with semipermeable nylon-polyethylenimine artificial cells containing L-glutamic dehydrogenase (EC 1.4.1. 3), yeast alcohol dehydrogenase (EC 1.1.1.1), urease (EC 3.5.1. 5) and soluble dextran-NAD(+). For batch conversion, the artificial cell suspension to total reaction volume ratios ranged from 1 in 5 to 1 in 60. From 22.6 to 53.4 micromol of L-glutamic acid could be produced by 0.4 mL artificial cell suspension within 2 h. The corresponding conversion ratios were 56.5-11. 1%. The L-glutamic dehydrogenase multienzyme system showed a good storage stability: 66.0% of the original activity was retained after 1 month of storage at 4 degrees C. A small bioreactor was prepared to contain 4.0 mL artificial cells. At a flow rate of SV = 1.5 h(-1), the maximum conversion rate was 49.6 micromol L-glutamic acid/p h. Thirty-eight percent of the maximum activity was retained when continuously used for four days at 22 degrees C. A kinetic analysis for the L-glutamic dehydrogenase multienzyme system was studied. The Michaelis constants are as follows: alpha-ketoglutarate is 0.838 mM; urea is 1.90 mM; dextran- NAD(+) is 0.345 mM; and ethanol is 5.31 mM.

Referência(s)