Artigo Revisado por pares

Intuitionistic Logic and Local Mathematical Theories

1977; Wiley; Volume: 23; Issue: 27-30 Linguagem: Inglês

10.1002/malq.19770232704

ISSN

1521-3870

Autores

Yvon Gauthier,

Tópico(s)

Advanced Topology and Set Theory

Resumo

Mathematical Logic QuarterlyVolume 23, Issue 27-30 p. 411-414 Article Intuitionistic Logic and Local Mathematical Theories Yvon Gauthier, Yvon Gauthier Montreal (Canada)Search for more papers by this author Yvon Gauthier, Yvon Gauthier Montreal (Canada)Search for more papers by this author First published: 1977 https://doi.org/10.1002/malq.19770232704Citations: 2AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 Beth, E. W., Semantic Construction of Intuitionistic Logie. In: Medelingen der Koninklijke Nederlandse Akademie van Wetenschappen, Afd. Letterkunde, Niewe Reeks, Deel 19, No. 11. 2 Artin, M., Grothendieck, A., et J. L. Verdier, Théorie des topos et cohomologie étale des schémes. Lecture Notes in Mathematics, vol. 269–270. Springer-Verlag, Berlin—Heidelberg—New York 1972. 3 Gauthier, Y., Fondements des Mathématiques. Introduction a; une philosophie constructiviste. To be published. 4 Codement, R., Topologie algébrique et théorie des faisceaux. Hermann, Paris 1958. 5 Haag, R., Quantum Field Theory. In: Mathematics of Contemporary Physics, ed. by R. F. Streater, Academic Press, London-New York 1972, p. 1–16. 6 Kripke, S., Semantical Analysis of Intuitionistic Logic I. In: Formal Systems and Recursive Functions Proceedings of the Eighth Logic Colloquium, Oxford, Juli 1962. North-Holland Publishing Co., Amsterdam 1965, p. 92–130. 7 Lawvere, F. W., Quantifiers and Sheaves. Actes Congrès intern. math. 1 (1970), 329–334. 8 MacLane, S., Categories for the Working Mathematician. Springer-Verlag, Berlin-Heidelberg—New York 1971. 9 Makkai, M., and G. E. Reyes, Model-Theoretic Methods in the Theory of Topoi and Related Categories. To be published. 10 Rasiowa, H., and R. Sikorski, The Mathematics of Metamathematics. Polska Akademia Nauk, Warszawa 1963. 11 Reyes, G., From Sheaves to Logic. To be published. 12 Scott, D., Extending the topological interpretation to intuitionistic analysis I. Compositio Math. 20 (1969), 194–210. 13 Seebe, J. P., Géométrie algébrique et géométrie analytique. Ann. Inst. Fourier 6 (1956), 1–42. 14 Serre, J. P., Faisceaux algébriques cohérents. Ann. of Math. 61 (1955), 197–278. 15 Tierney, M., Sheaf Theory and the Continuum Hypothesis. In Toposes, Algebraic Geometry and Logic. Lecture Notes in Math. 274, Springer-Verlag, Berlin—Heidelberg—New York 1972. 16 Troelstra, R. S., Principles of Intuitionism. Lecture Notes in Math. 95, Springer-Verlag, Berlin—Heidelberg—New York 1969. 17 Verdier, J. L., Topologies of faisceaux. Sém. de Géométrie Algébrique 63–64, Fasc. 1, Institut des Hautes Etudes Scientifiques, Paris. Citing Literature Volume23, Issue27-301977Pages 411-414 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX