Will a Sexual Population Evolve to an Ess?
1981; University of Chicago Press; Volume: 117; Issue: 6 Linguagem: Inglês
10.1086/283788
ISSN1537-5323
Autores Tópico(s)Evolution and Genetic Dynamics
ResumoPrevious articleNext article No AccessNotes and CommentsWill a Sexual Population Evolve to an Ess?J. Maynard SmithJ. Maynard Smith Search for more articles by this author PDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by The American Naturalist Volume 117, Number 6Jun., 1981 Published for The American Society of Naturalists Article DOIhttps://doi.org/10.1086/283788 Views: 10Total views on this site Citations: 91Citations are reported from Crossref Copyright 1981 The University of ChicagoPDF download Crossref reports the following articles citing this article:József Garay, Villő Csiszár, Tamás F. Móri Subsistence of sib altruism in different mating systems and Haldane’s arithmetic, Journal of Theoretical Biology 471 (Oct 2022): 111330.https://doi.org/10.1016/j.jtbi.2022.111330Bo-Yu Zhang, Shan Pei Game Theory and the Evolution of Cooperation, Journal of the Operations Research Society of China 10, no.22 (Jun 2021): 379–399.https://doi.org/10.1007/s40305-021-00350-zDániel Czégel, Hamza Giaffar, Joshua B. Tenenbaum, Eörs Szathmáry Bayes and Darwin: How replicator populations implement Bayesian computations, BioEssays 44, no.44 (Feb 2022): 2100255.https://doi.org/10.1002/bies.202100255Samuel R. Levin, Alan Grafen Extending the range of additivity in using inclusive fitness, Ecology and Evolution 11, no.55 (Feb 2021): 1970–1983.https://doi.org/10.1002/ece3.6935József Garay, Barnabás M. Garay, Zoltán Varga, Villő Csiszár, Tamás F. Móri To save or not to save your family member’s life? Evolutionary stability of self-sacrificing life history strategy in monogamous sexual populations, BMC Evolutionary Biology 19, no.11 (Jul 2019).https://doi.org/10.1186/s12862-019-1478-0Wendell P. Barreto, Flavia M.D. Marquitti, Marcus A.M. de Aguiar A genetic approach to the rock-paper-scissors game, Journal of Theoretical Biology 421 (May 2017): 146–152.https://doi.org/10.1016/j.jtbi.2017.04.003Deborah E. Shelton, Richard E. Michod Levels of selection and the formal Darwinism project, Biology & Philosophy 29, no.22 (Feb 2014): 217–224.https://doi.org/10.1007/s10539-013-9420-0Mike Boots, Andy White, Alex Best, Roger Bowers, Peter Thrall The importance of who infects whom: the evolution of diversity in host resistance to infectious disease, Ecology Letters 15, no.1010 (Aug 2012): 1104–1111.https://doi.org/10.1111/j.1461-0248.2012.01832.xLee Altenberg The evolution of dispersal in random environments and the principle of partial control, Ecological Monographs 82, no.33 (Aug 2012): 297–333.https://doi.org/10.1890/11-1136.1Arne Traulsen, Floyd A. Reed From genes to games: Cooperation and cyclic dominance in meiotic drive, Journal of Theoretical Biology 299 (Apr 2012): 120–125.https://doi.org/10.1016/j.jtbi.2011.04.032Tuomas Nurmi, Kalle Parvinen Joint evolution of specialization and dispersal in structured metapopulations, Journal of Theoretical Biology 275, no.11 (Apr 2011): 78–92.https://doi.org/10.1016/j.jtbi.2011.01.023Koh Hashimoto, Kazuyuki Aihara Fixation probabilities in evolutionary game dynamics with a two-strategy game in finite diploid populations, Journal of Theoretical Biology 258, no.44 (Jun 2009): 637–645.https://doi.org/10.1016/j.jtbi.2009.02.004Kalle Parvinen, Johan A.J. Metz A novel fitness proxy in structured locally finite metapopulations with diploid genetics, with an application to dispersal evolution, Theoretical Population Biology 73, no.44 (Jun 2008): 517–528.https://doi.org/10.1016/j.tpb.2008.01.002Brian J. McGill, Joel S. Brown Evolutionary Game Theory and Adaptive Dynamics of Continuous Traits, Annual Review of Ecology, Evolution, and Systematics 38, no.11 (Dec 2007): 403–435.https://doi.org/10.1146/annurev.ecolsys.36.091704.175517Richard E. Michod John Maynard Smith, Annual Review of Genetics 39, no.11 (Dec 2005): 1–8.https://doi.org/10.1146/annurev.genet.39.040505.114723Karl Sigmund John Maynard Smith and evolutionary game theory, Theoretical Population Biology 68, no.11 (Jul 2005): 7–10.https://doi.org/10.1016/j.tpb.2004.10.002Sabin Lessard Long-term stability from fixation probabilities in finite populations: New perspectives for ESS theory, Theoretical Population Biology 68, no.11 (Jul 2005): 19–27.https://doi.org/10.1016/j.tpb.2005.04.001Peter Hammerstein Strategic analysis in evolutionary genetics and the theory of games, Journal of Genetics 84, no.11 (Apr 2005): 7–12.https://doi.org/10.1007/BF02715884Michael Boots, Roger G. Bowers The evolution of resistance through costly acquired immunity, Proceedings of the Royal Society of London. Series B: Biological Sciences 271, no.15401540 (Apr 2004): 715–723.https://doi.org/10.1098/rspb.2003.2655Josef Hofbauer, Karl Sigmund Evolutionary game dynamics, Bulletin of the American Mathematical Society 40, no.44 (Jul 2003): 479–519.https://doi.org/10.1090/S0273-0979-03-00988-1József Garay, Zoltán Varga Coincidence of ESAD and ESS in dominant–recessive hereditary systems, Journal of Theoretical Biology 222, no.33 (Jun 2003): 297–305.https://doi.org/10.1016/S0022-5193(03)00027-4Tom J. M. Van Dooren THE EVOLUTIONARY DYNAMICS OF DIRECT PHENOTYPIC OVERDOMINANCE: EMERGENCE POSSIBLE, LOSS PROBABLE, Evolution 54, no.66 (Dec 2000): 1899–1914.https://doi.org/10.1111/j.0014-3820.2000.tb01236.xTAO YI, SABIN LESSARD, MATHIEU LEMIRE Evolutionarily Stable Strategy in a Sex- and Frequency-Dependent Selection Model, Journal of Theoretical Biology 204, no.22 (May 2000): 191–200.https://doi.org/10.1006/jtbi.2000.1098Tom J. M. Van Dooren THE EVOLUTIONARY DYNAMICS OF DIRECT PHENOTYPIC OVERDOMINANCE: EMERGENCE POSSIBLE, LOSS PROBABLE, Evolution 54, no.66 (Jan 2000): 1899.https://doi.org/10.1554/0014-3820(2000)054[1899:TEDODP]2.0.CO;2MICHAEL BOOTS, ROGER G BOWERS Three Mechanisms of Host Resistance to Microparasites—Avoidance, Recovery and Tolerance—Show Different Evolutionary Dynamics, Journal of Theoretical Biology 201, no.11 (Nov 1999): 13–23.https://doi.org/10.1006/jtbi.1999.1009 Michael Boots and Yoshihiro Haraguchi The Evolution of Costly Resistance in Host‐Parasite Systems. M. Boots and Y. Haraguchi, The American Naturalist 153, no.44 (Jul 2015): 359–370.https://doi.org/10.1086/303181J. Radcliffe, L. Rass Spatial Mendelian games, Mathematical Biosciences 151, no.22 (Aug 1998): 199–218.https://doi.org/10.1016/S0025-5564(98)10011-1József Garay, Zoltán Varga When will a sexual population evolve to an ESS?, Proceedings of the Royal Society of London. Series B: Biological Sciences 265, no.14001400 (Jun 1998): 1007–1010.https://doi.org/10.1098/rspb.1998.0391R. Cressman, J. Hofbauer, W.G.S. Hines Evolutionary stability in strategic models of single-locus frequency-dependent viability selection, Journal of Mathematical Biology 34, no.77 (Aug 1996): 707–733.https://doi.org/10.1007/BF00161516W. G. S. Hines Searching for Degenerate Dynamics in Animal Conflict Game Models involving Sexual Reproduction, (Jan 1995): 467–482.https://doi.org/10.1007/978-1-4612-4274-1_24 Derek A. Roff Habitat Persistence and the Evolution of Wing Dimorphism in Insects, The American Naturalist 144, no.55 (Oct 2015): 772–798.https://doi.org/10.1086/285706 Life-history trade-offs and the evolution of pathogen resistance: competition between host strains, Proceedings of the Royal Society of London. Series B: Biological Sciences 257, no.13501350 (Jan 1997): 247–253.https://doi.org/10.1098/rspb.1994.0122W. G. S. Hines ESS Modelling of Diploid Populations I: Anatomy of One-Locus Allelic Frequency Simplices, Advances in Applied Probability 26, no.22 (Jun 1994): 341.https://doi.org/10.2307/1427440M. Schartl, S. Hölter, C. Erbelding-Denk, J. H. Schröder, I. Nanda, M. Schmid, J. T. Epplen High mating success of low rank males in Limia perugiae (Pisces: Poeciliidae) as determined by DNA fingerprinting, (Jan 1993): 363–370.https://doi.org/10.1007/978-3-0348-8583-6_34 Bo Ebenman Evolution in Organisms that Change Their Niches during the Life Cycle, The American Naturalist 139, no.55 (Oct 2015): 990–1021.https://doi.org/10.1086/285370J.F. Gerard, P.Y. Quenette Optimization, evolutionary stable strategies and heterosis in sexual populations, Ethology Ecology & Evolution 4, no.22 (Apr 1992): 175–181.https://doi.org/10.1080/08927014.1992.9525338David G. Lloyd, D.Lawrence Venable Some properties of natural selection with single and multiple constraints, Theoretical Population Biology 41, no.11 (Feb 1992): 90–110.https://doi.org/10.1016/0040-5809(92)90051-TG. A. Parker, J. Maynard Smith Optimality theory in evolutionary biology, Nature 348, no.62966296 (Nov 1990): 27–33.https://doi.org/10.1038/348027a0 Todd W. Gayley , and Richard E. Michod Modification of Genetic Constraints on Frequency-Dependent Selection, The American Naturalist 136, no.33 (Oct 2015): 406–427.https://doi.org/10.1086/285104Sabin Lessard Évolution Du Rapport Numérique Des Sexes Et Modèles Dynamiques Connexes, (Jan 1990): 269–325.https://doi.org/10.1007/978-94-009-0513-9_6Martin Nowak An evolutionarily stable strategy may be inaccessible, Journal of Theoretical Biology 142, no.22 (Jan 1990): 237–241.https://doi.org/10.1016/S0022-5193(05)80224-3Edmund J. Zimmerer, Klaus D. Kallman GENETIC BASIS FOR ALTERNATIVE REPRODUCTIVE TACTICS IN THE PYGMY SWORDTAIL, XIPHOPHORUS NIGRENSIS, Evolution 43, no.66 (May 2017): 1298–1307.https://doi.org/10.1111/j.1558-5646.1989.tb02576.xR. Cressman Frequency-dependent viability selection (A single-locus, multi-phenotype model), Journal of Theoretical Biology 130, no.22 (Jan 1988): 147–165.https://doi.org/10.1016/S0022-5193(88)80090-0R. Cressman Complex dynamical behaviour of frequency-dependent viability selection: An example, Journal of Theoretical Biology 130, no.22 (Jan 1988): 167–173.https://doi.org/10.1016/S0022-5193(88)80091-2J.Maynard Smith, Josef Hofbauer The “battle of the sexes”: A genetic model with limit cycle behavior, Theoretical Population Biology 32, no.11 (Aug 1987): 1–14.https://doi.org/10.1016/0040-5809(87)90035-9Karl Sigmund A maximum principle for frequency dependent selection, Mathematical Biosciences 84, no.22 (Jun 1987): 189–195.https://doi.org/10.1016/0025-5564(87)90091-5W.G.S. Hines Can and will a sexual diploid population evolve to an ESS: The multi-locus linkage equilibrium case, Journal of Theoretical Biology 126, no.11 (May 1987): 1–5.https://doi.org/10.1016/S0022-5193(87)80096-6 G. A. Parker , and J. Maynard Smith The Distribution of Stay Times in Scatophaga: Reply to Curtsinger, The American Naturalist 129, no.44 (Oct 2015): 621–628.https://doi.org/10.1086/284662W.G.S. Hines Evolutionary Stable Strategies: A review of basic theory, Theoretical Population Biology 31, no.22 (Apr 1987): 195–272.https://doi.org/10.1016/0040-5809(87)90029-3Joel S. Brown, Thomas L. Vincent A theory for the evolutionary game, Theoretical Population Biology 31, no.11 (Feb 1987): 140–166.https://doi.org/10.1016/0040-5809(87)90026-8Thomas L. Vincent, Joel S. Brown An Evolutionary Response to Harvesting, (Jan 1987): 80–97.https://doi.org/10.1007/978-3-642-93365-3_7Michael L. Rosenzweig, Joel S. Brown, Thomas L. Vincent Red Queens and ESS: the coevolution of evolutionary rates, Evolutionary Ecology 1, no.11 (Jan 1987): 59–94.https://doi.org/10.1007/BF02067269Joel S. Brown, Thomas L. Vincent COEVOLUTION AS AN EVOLUTIONARY GAME, Evolution 41, no.11 (May 2017): 66–79.https://doi.org/10.1111/j.1558-5646.1987.tb05771.xP.H. van Tienderen, G. de Jong Sex ratio under the haystack model: Polymorphism may occur, Journal of Theoretical Biology 122, no.11 (Sep 1986): 69–81.https://doi.org/10.1016/S0022-5193(86)80225-9 James W. Curtsinger Stay Times in Scatophaga and the Theory of Evolutionarily Stable Strategies, The American Naturalist 128, no.11 (Oct 2015): 130–136.https://doi.org/10.1086/284546Immanuel M. Bomze Non-cooperative two-person games in biology: A classification, International Journal of Game Theory 15, no.11 (Mar 1986): 31–57.https://doi.org/10.1007/BF01769275Karl Sigmund A Survey of Replicator Equations, (Jan 1986): 88–104.https://doi.org/10.1007/978-3-642-70953-1_4Bernhard Thomas Genetical ESS-models. I. Concepts and basic model, Theoretical Population Biology 28, no.11 (Aug 1985): 18–32.https://doi.org/10.1016/0040-5809(85)90020-6Bernhard Thomas Genetical ESS-models. II. Multi-strategy models and multiple alleles, Theoretical Population Biology 28, no.11 (Aug 1985): 33–49.https://doi.org/10.1016/0040-5809(85)90021-8Stephen Ellner ESS germination strategies in randomly varying environments. I. Logistic-type models, Theoretical Population Biology 28, no.11 (Aug 1985): 50–79.https://doi.org/10.1016/0040-5809(85)90022-XW.G.S. Hines, D.T. Bishop Can and will a sexual diploid population attain an evolutionary stable strategy?, Journal of Theoretical Biology 111, no.44 (Dec 1984): 667–686.https://doi.org/10.1016/S0022-5193(84)80261-1DANIEL J. SCHOEN, DAVID G. LLOYD The selection of cleistogamy and heteromorphic diaspores, Biological Journal of the Linnean Society 23, no.44 (Jan 2008): 303–322.https://doi.org/10.1111/j.1095-8312.1984.tb00147.xKenichi Aoki A quantitative genetic model of two-policy games between relatives, Journal of Theoretical Biology 109, no.11 (Jul 1984): 111–126.https://doi.org/10.1016/S0022-5193(84)80114-9W. G. S. Hines, D. T. Bishop On the local stability of an evolutionarily stable strategy in a diploid population, Journal of Applied Probability 21, no.22 (Jul 2016): 215–224.https://doi.org/10.2307/3213634Sabin Lessard Evolutionary dynamics in frequency-dependent two-phenotype models, Theoretical Population Biology 25, no.22 (Apr 1984): 210–234.https://doi.org/10.1016/0040-5809(84)90019-4J. Maynard Smith Game theory and the evolution of behaviour, Behavioral and Brain Sciences 7, no.11 (Feb 2010): 95–101.https://doi.org/10.1017/S0140525X00026327George W. Barlow, Thelma E. Rowell The contribution of game theory to animal behavior, Behavioral and Brain Sciences 7, no.11 (Feb 2010): 101–103.https://doi.org/10.1017/S0140525X00026339D. Caroline Blanchard, Robert J. Blanchard, Kevin J. Flannelly Cost-benefit analysis: An emotional calculus, Behavioral and Brain Sciences 7, no.11 (Feb 2010): 103–104.https://doi.org/10.1017/S0140525X00026340Hillel J. Einhorn Random strategies and “ran-dumb” behavior, Behavioral and Brain Sciences 7, no.11 (Feb 2010): 104–104.https://doi.org/10.1017/S0140525X00026352Thomas J. Fararo Evolutionary game theory and human social structures, Behavioral and Brain Sciences 7, no.11 (Feb 2010): 104–105.https://doi.org/10.1017/S0140525X00026364Margaret Gilbert Coordination problems and the evolution of behavior, Behavioral and Brain Sciences 7, no.11 (Feb 2010): 106–107.https://doi.org/10.1017/S0140525X00026376R. J. Herrnstein, William Vaughan Evolutionary and behavioral stability, Behavioral and Brain Sciences 7, no.11 (Feb 2010): 107–108.https://doi.org/10.1017/S0140525X00026388Timothy D. Johnston Development and the origin of behavioral strategies, Behavioral and Brain Sciences 7, no.11 (Feb 2010): 108–109.https://doi.org/10.1017/S0140525X0002639XJohn R. Krebs, Alejandro Kacelnik Optimal learning rules, Behavioral and Brain Sciences 7, no.11 (Feb 2010): 109–110.https://doi.org/10.1017/S0140525X00026406S. E. G. Lea, S. M. Dow Optimization and flexibility, Behavioral and Brain Sciences 7, no.11 (Feb 2010): 110–111.https://doi.org/10.1017/S0140525X00026418A. W. Logue Is it possible to be optimal?, Behavioral and Brain Sciences 7, no.11 (Feb 2010): 111–111.https://doi.org/10.1017/S0140525X0002642XJohn C. Malone Evolutionary game theory: Suddenly it's 1960! (or is it 1860?), Behavioral and Brain Sciences 7, no.11 (Feb 2010): 112–112.https://doi.org/10.1017/S0140525X00026431James E. Mazur Is matching behavior an evolutionary inevitability?, Behavioral and Brain Sciences 7, no.0101 (Feb 2010): 112.https://doi.org/10.1017/S0140525X00026443Howard Rachlin Learning rules and learning rules, Behavioral and Brain Sciences 7, no.11 (Feb 2010): 113–114.https://doi.org/10.1017/S0140525X00026455Anatol Rapoport Game theory without rationality, Behavioral and Brain Sciences 7, no.11 (Feb 2010): 114–115.https://doi.org/10.1017/S0140525X00026467Reinhard Selten, Peter Hammerstein Gaps in Harley's argument on evolutionarily stable learning rules and in the logic of “tit for tat”, Behavioral and Brain Sciences 7, no.11 (Feb 2010): 115–116.https://doi.org/10.1017/S0140525X00026479J. E. R. Staddon It's all a game, Behavioral and Brain Sciences 7, no.11 (Feb 2010): 116–117.https://doi.org/10.1017/S0140525X00026480Richard H. Thaler Asymmetric games and the endowment effect, Behavioral and Brain Sciences 7, no.11 (Feb 2010): 117–117.https://doi.org/10.1017/S0140525X00026492George C. Williams When does game theory model reality?, Behavioral and Brain Sciences 7, no.11 (Feb 2010): 117–117.https://doi.org/10.1017/S0140525X00026509J. Maynard Smith Game theory without rationality, Behavioral and Brain Sciences 7, no.11 (Feb 2010): 117–125.https://doi.org/10.1017/S0140525X00026510Samuel Karlin Mathematical models, problems, and controversies of evolutionary theory, Bulletin of the American Mathematical Society 10, no.22 (Jan 1984): 221–273.https://doi.org/10.1090/S0273-0979-1984-15239-XDavid G. Lloyd Evolutionarily stable sex ratios and sex allocations, Journal of Theoretical Biology 105, no.33 (Dec 1983): 525–539.https://doi.org/10.1016/0022-5193(83)90191-1W. G. S. Hines, D. T. Bishop On learning and the evolutionarily stable strategy, Journal of Applied Probability 20, no.33 (Jul 2016): 689–695.https://doi.org/10.2307/3213903W. G. S. Hines, D. T. Bishop Evolutionarily stable strategies in diploid populations with general inheritance patterns, Journal of Applied Probability 20, no.22 (Jul 2016): 395–399.https://doi.org/10.2307/3213812Immanuel M. Bomze, Peter Schuster, Karl Sigmund The role of mendelian genetics in stragetic models on animal behaviour, Journal of Theoretical Biology 101, no.11 (Mar 1983): 19–38.https://doi.org/10.1016/0022-5193(83)90271-0Ilan Eshel Evolutionarily stable strategies and viability selection in mendelian populations, Theoretical Population Biology 22, no.22 (Oct 1982): 204–217.https://doi.org/10.1016/0040-5809(82)90042-9
Referência(s)