Artigo Acesso aberto Revisado por pares

2013 ESH/ESC Guidelines for the management of arterial hypertension

2013; Lippincott Williams & Wilkins; Volume: 31; Issue: 7 Linguagem: Inglês

10.1097/01.hjh.0000431740.32696.cc

ISSN

1473-5598

Autores

Giuseppe Mancia, Robert Fagard, Krzysztof Narkiewicz, Josep Redón, Alberto Zanchetti, Michael Böhm, Thierry Christiaens, Renata Cífková, Guy De Backer, Anna F. Dominiczak, Maurizio Galderisi, Diederick E. Grobbee, Tiny Jaarsma, Paulus Kirchhof, Sverre E. Kjeldsen, Stéphane Laurent, Athanasios Manolis, Peter M. Nilsson, Luís M. Ruilope, Roland E. Schmieder, Per Anton Sirnes, Peter Sleight, Margus Viigimaa, Bernard Waeber, Faı̈ez Zannad,

Tópico(s)

Nutritional Studies and Diet

Resumo

Table of Contents Introduction Principles New aspects Epidemiological aspects Relationship of blood pressure to cardiovascular and renal damage Definition and classification of hypertension Prevalence of hypertension Hypertension and total cardiovascular risk Assessment of total cardiovascular risk Limitations Summary of recommendations on total cardiovascular risk assessment Diagnostic evaluation Bood pressure measurement Office or clinic blood pressure Out-of-office blood pressure White-coat (or isolated office) hypertension and masked (or isolated ambulatory) hypertension Clinical indications for out-of-office blood pressure Blood pressure during exercise and laboratory stress Central blood pressure Medical history Physical examination Summary of recommendations on blood pressure measurement, history, and physical examination Laboratory investigations Genetics Searching for asymptomatic organ damage Heart Blood vessels Kidney Fundoscopy Brain Clinical value and limitations Summary of recommendations on the search for asymptomatic organ damage, cardiovascular disease, and chronic kidney disease Searching for secondary forms of hypertension Treatment approach Evidence favouring therapeutic reduction of high blood pressure When to initiate antihypertensive drug treatment Recommendations of previous Guidelines Grade 2 and 3 hypertension and high-risk grade 1 hypertension Low-to-moderate risk, grade 1 hypertension Isolated systolic hypertension in youth Grade 1 hypertension in the elderly High normal blood pressure Summary of recommendations on initiation of antihypertensive drug treatment Blood pressure treatment targets Recommendations of previous Guidelines Low-to-moderate risk hypertensive patients Hypertension in the elderly High-risk patients The ‘lower the better’ vs. the J-shaped curve hypothesis Evidence on target blood pressure from organ damage studies Clinic vs. home and ambulatory blood pressure targets Summary of recommendations on blood pressure targets in hypertensive patients Treatment strategies Lifestyle changes Salt restriction Moderation of alcohol consumption Other dietary changes Weight reduction Regular physical exercise Smoking cessation Summary of recommendations on adoption of lifestyle changes Pharmacological therapy Choice of antihypertensive drugs Monotherapy and combination therapy Summary of recommendations on treatment strategies and choice of drugs Treatment strategies in special conditions White-coat hypertension Masked hypertension Summary of recommendations on treatment strategies in white-coat and masked hypertension Elderly Summary of recommendations on antihypertensive treatment strategies in the elderly Young adults Women Oral contraceptives Hormone replacement therapy Pregnancy Long-term cardiovascular consequences in gestational hypertension Summary of recommendations on treatment strategies in hypertensive women Diabetes mellitus Summary of recommendations on treatment strategies in patients with diabetes Metabolic syndrome Summary of recommendations on treatment strategies in hypertensive patients with metabolic syndrome Obstructive sleep apnoea Diabetic and non-diabetic nephropathy Summary of recommendations on therapeutic strategies in hypertensive patients with nephropathy Chronic kidney disease stage 5D Cerebrovascular disease Acute stroke Previous stroke or transient ischaemic attack Cognitive dysfunction and white matter lesions Summary of recommendations on therapeutic strategies in hypertensive patients with cerebrovascular disease Heart disease Coronary heart disease Heart failure Atrial fibrillation Left ventricular hypertrophy Summary of recommendations on therapeutic strategies in hypertensive patients with heart disease Atherosclerosis, arteriosclerosis, and peripheral artery disease Carotid atherosclerosis Increased arterial stiffness Peripheral artery disease Summary of recommendations on therapeutic strategies in hypertensive patients with atherosclerosis, arteriosclerosis, and peripheral artery disease Sexual dysfunction Resistant hypertension Carotid baroreceptor stimulation Renal denervation Other invasive approaches Follow-up in resistant hypertension Summary of recommendations on therapeutic strategies in patients with resistant hypertension Malignant hypertension Hypertensive emergencies and urgencies Perioperative management of hypertension Renovascular hypertension Primary aldosteronism Treatment of associated risk factors Lipid-lowering agents Antiplatelet therapy Treatment of hyperglycaemia Summary of recommendations on treatment of risk factors associated with hypertension Follow-up Follow-up of hypertensive patients Follow-up of subjects with high normal blood pressure and white-coat hypertension Elevated blood pressure at control visits Continued search for asymptomatic organ damage Can antihypertensive medications be reduced or stopped? Improvement of blood pressure control in hypertension Hypertension disease management Team approach in disease management Mode of care delivery The role of information and communication technologies 53 Gaps in evidence and need for future trials Appendix 1 Appendix 2 Acknowledgments References 1. INTRODUCTION 1.1 Principles The 2013 guidelines on hypertension of the European Society of Hypertension (ESH) and the European Society of Cardiology (ESC) follow the guidelines jointly issued by the two societies in 2003 and 2007 [1,2]. Publication of a new document 6 years after the previous one was felt to be timely because, over this period, important studies have been conducted and many new results have been published on both the diagnosis and treatment of individuals with an elevated blood pressure (BP), making refinements, modifications and expansion of the previous recommendations necessary. The 2013 ESH/ESC guidelines continue to adhere to some fundamental principles that inspired the 2003 and 2007 guidelines, namely (i) to base recommendations on properly conducted studies identified from an extensive review of the literature, (ii) to consider, as the highest priority, data from randomized, controlled trials (RCTs) and their meta-analyses, but not to disregard—particularly when dealing with diagnostic aspects—the results of observational and other studies of appropriate scientific calibre, and (iii) to grade the level of scientific evidence and the strength of recommendations on major diagnostic and treatment issues as in European guidelines on other diseases, according to ESC recommendations (Tables 1 and 2). While it was not done in the 2003 and 2007 guidelines, providing the recommendation class and the level of evidence is now regarded as important for providing interested readers with a standard approach, by which to compare the state of knowledge across different fields of medicine. It was also thought that this could more effectively alert physicians on recommendations that are based on the opinions of the experts rather than on evidence. This is not uncommon in medicine because, for a great part of daily medical practice, no good science is available and recommendations must therefore stem from common sense and personal clinical experience, both of which can be fallible. When appropriately recognized, this can avoid guidelines being perceived as prescriptive and favour the performance of studies where opinion prevails and evidence is lacking. A fourth principle, in line with its educational purpose, is to provide a large number of tables and a set of concise recommendations that could be easily and rapidly consulted by physicians in their routine practice.TABLE 1: Classes of recommendationsTABLE 2: Levels of EvidenceThe European members of the Task Force in charge of the 2013 guidelines on hypertension have been appointed by the ESH and ESC, based on their recognized expertise and absence of major conflicts of interest [their declaration of interest forms can be found on the ESC website (www.escardio.org/guidelines) and ESH website (www.eshonline.org)]. Each member was assigned a specific writing task, which was reviewed by three co-ordinators and then by two chairmen, one appointed by ESH and another by ESC. The text was finalized over approximately 18 months, during which the Task Force members met collectively several times and corresponded intensively with one another between meetings. Before publication, the document was also assessed twice by 42 European reviewers, half selected by ESH and half by ESC. It can thus be confidently stated that the recommendations issued by the 2013 ESH/ESC guidelines on hypertension largely reflect the state of the art on hypertension, as viewed by scientists and physicians in Europe. Expenses for meetings and the remaining work have been shared by ESH and ESC. 1.2 New aspects Because of new evidence on several diagnostic and therapeutic aspects of hypertension, the present guidelines differ in many respects from the previous ones [2]. Some of the most important differences are listed below: Epidemiological data on hypertension and BP control in Europe. Strengthening of the prognostic value of home blood pressure monitoring (HBPM) and of its role for diagnosis and management of hypertension, next to ambulatory blood pressure monitoring (ABPM). Update of the prognostic significance of night-time BP, white-coat hypertension and masked hypertension. Re-emphasis on integration of BP, cardiovascular (CV) risk factors, asymptomatic organ damage (OD) and clinical complications for total CV risk assessment. Update of the prognostic significance of asymptomatic OD, including heart, blood vessels, kidney, eye and brain. Reconsideration of the risk of overweight and target body mass index (BMI) in hypertension. Hypertension in young people. Initiation of antihypertensive treatment. More evidence-based criteria and no drug treatment of high normal BP. Target BP for treatment. More evidence-based criteria and unified target systolic blood pressure (SBP) ( 140 mmHg SBP and/or >90 mmHg DBP, based on the evidence from RCTs that in patients with these BP values treatment-induced BP reductions are beneficial (see Sections 4.1 and 4.2). The same classification is used in young, middle-aged and elderly subjects, whereas different criteria, based on percentiles, are adopted in children and teenagers for whom data from interventional trials are not available. Details on BP classification in boys and girls according to their age and height can be found in the ESH's report on the diagnosis, evaluation and treatment of high BP in children and adolescents [15].TABLE 3: Definitions and classification of office blood pressure levels (mmHg)a2.3 Prevalence of hypertension Limited comparable data are available on the prevalence of hypertension and the temporal trends of BP values in different European countries [16]. Overall the prevalence of hypertension appears to be around 30–45% of the general population, with a steep increase with ageing. There also appear to be noticeable differences in the average BP levels across countries, with no systematic trends towards BP changes in the past decade [17–37]. Owing to the difficulty of obtaining comparable results among countries and overtime, the use of a surrogate of hypertension status has been suggested [38]. Stroke mortality is a good candidate, because hypertension is by far the most important cause of this event. A close relationship between prevalence of hypertension and mortality for stroke has been reported [39]. The incidence and trends of stroke mortality in Europe have been analysed by use of World Health Organization (WHO) statistics. Western European countries exhibit a downward trend, in contrast to eastern European countries, which show a clear-cut increase in death rates from stroke [40]. 2.4 Hypertension and total cardiovascular risk For a long time, hypertension guidelines focused on BP values as the only- or main variables determining the need for—and the type of—treatment. In 1994, the ESC, ESH and European Atherosclerosis Society (EAS) developed joint recommendations on prevention of coronary heart disease (CHD) in clinical practice [41], and emphasized that prevention of CHD should be related to quantification of total (or global) CV risk. This approach is now generally accepted and had already been integrated into the 2003 and 2007 ESH/ESC guidelines for the management of arterial hypertension [1,2]. The concept is based on the fact that only a small fraction of the hypertensive population has an elevation of BP alone, with the majority exhibiting additional CV risk factors. Furthermore, when concomitantly present, BP and other CV risk factors may potentiate each other, leading to a total CV risk that is greater than the sum of its individual components. Finally, in high-risk individuals, antihypertensive treatment strategies (initiation and intensity of treatment, use of drug combinations, etc.: see Sections 4,5,6 and 7), as well as other treatments, may be different from those to be implemented in lower-risk individuals. There is evidence that, in high-risk individuals, BP control is more difficult and more frequently requires the combination of antihypertensive drugs with other therapies, such as aggressive lipid-lowering treatments. The therapeutic approach should consider total CV risk in addition to BP levels in order to maximize cost-effectiveness of the management of hypertension. 2.4.1 Assessment of total cardiovascular risk Estimation of total CV risk is easy in particular subgroups of patients, such as those with antecedents of established cardiovascular disease (CVD), diabetes, CHD or with severely elevated single risk factors. In all of these conditions, the total CV risk is high or very high, calling for intensive CV risk-reducing measures. However, a large number of patients with hypertension do not belong to any of the above categories and the identification of those at low, moderate, high or very high risk requires the use of models to estimate total CV risk, so as to be able to adjust the therapeutic approach accordingly. Several computerized methods have been developed for estimating total CV risk [41–48]. Their values and limitations have been reviewed recently [49]. The Systematic COronary Risk Evaluation (SCORE) model has been developed based on large European cohort studies. The model estimates the risk of dying from CV (not just coronary) disease over 10 years based on age, gender, smoking habits, total cholesterol and SBP [43]. The SCORE model allows calibration of the charts for individual countries, which has been done for numerous European countries. At the international level, two sets of charts are provided: one for high-risk and one for low-risk countries. The electronic, interactive version of SCORE, known as Heart Score (available through www.heartscore.org), is adapted to also allow adjustment for the impact of high-density lipoprotein cholesterol on total CV risk. The charts and their electronic versions can assist in risk assessment and management but must be interpreted in the light of the physician's knowledge and experience, especially with regard to local conditions. Furthermore, the implication that total CV risk estimation is associated with improved clinical outcomes when compared with other strategies has not been adequately tested. Risk may be higher than indicated in the charts in: Sedentary subjects and those with central obesity; the increased relative risk associated with overweight is greater in younger subjects than in older subjects. Socially deprived individuals and those from ethnic minorities. Subjects with elevated fasting glucose and/or an abnormal glucose tolerance test, who do not meet the diagnostic criteria for diabetes. Individuals with increased triglycerides, fibrinogen, apolipoprotein B, lipoprotein(a) levels and high-sensitivity C-reactive protein. Individuals with a family history of premature CVD (before the age of 55 years in men and 65 years in women). In SCORE, total CV risk is expressed as the absolute risk of dying from CVD within 10 years. Because of its heavy dependence on age, in young patients, absolute total CV risk can be low even in the presence of high BP with additional risk factors. If insufficiently treated, however, this condition may lead to a partly irreversible high-risk condition years later. In younger subjects, treatment decisions should better be guided by quantification of relative risk or by estimating heart and vascular age. A relative-risk chart is available in the Joint European Societies’Guidelines on CVD Prevention in Clinical Practice [50], which is helpful when advising young persons. Further emphasis has been given to identification of OD, since hypertension-related asymptomatic alterations in several organs indicate progression in the CVD continuum, which markedly increases the risk beyond that caused by the simple presence of risk factors. A separate section (Section 3.7) is devoted to searching for asymptomatic OD [51−53], where evidence for the additional risk of each sub- clinical alteration is discussed. For more than a decade, international guidelines for the management of hypertension (the 1999 and 2003 WHO/International Society of Hypertension Guidelines and the 2003 and 2007 ESH/ESC Guidelines) [1,2,54,55] have stratified CV risk in different categories, based on BP category, CV risk factors, asymptomatic OD and presence of diabetes, symptomatic CVD or chronic kidney disease (CKD), as also done by the 2012 ESC prevention guidelines [50]. The classification in low, moderate, high and very high risk is retained in the current guidelines and refers to the 10-year risk of CV mortality as defined by the 2012 ESC prevention guidelines (Fig. 1) [50]. The factors on which the stratification is based are summarized in Table 4.FIGURE 1: Stratification of total CV risk in categories of low, moderate, high and very high risk according to SBP and DBP and prevalence of RFs, asymptomatic OD, diabetes, CKD stage or symptomatic CVD. Subjects with a high normal office but a raised out-of-office BP (masked hypertension) have a CV risk in the hypertension range. Subjects with a high office BP but normal out-of-office BP (white-coat hypertension), particularly if there is no diabetes, OD, CVD or CKD, have lower risk than sustained hypertension for the same office BP.TABLE 4: Factors—other than office BP—influencing prognosis; used for stratification of total CV risk in Fig. 12.4.2 Limitations All currently available models for CV risk assessment have limitations that must be appreciated. The significance of OD in determining calculation of overall risk is dependent on how carefully the damage is assessed, based on available facilities. Conceptual limitations should also be mentioned. One should never forget that the rationale of estimating total CV risk is to govern the best use of limited resources to prevent CVD; that is, to grade preventive measures in relation to the increased risk. Yet, stratification of absolute risk is often used by private or public healthcare providers to establish a barrier, below which treatment is discouraged. It should be kept in mind that any threshold used to define high total CV risk is arbitrary, as well as the use of a cut-off value leading to intensive interventions above this threshold and no action at all below. Finally, there is a strong effect of age on total CV risk models. It is so strong that younger adults (particularly women) are unlikely to reach high-risk levels even when they have more than one major risk factor and a clear increase in relative risk. By contrast, many elderly men (e.g. >70 years) reach a high total risk level whilst being at very little increased risk relative to their peers. The consequences are that most resources are concentrated in older subjects, whose potential lifespan is relatively short despite intervention, and little attention is given to young subjects at high relative risk despite the fact that, in the absence of intervention, their long-term exposure to an increased risk may lead to a high and partly irreversible risk situation in middle age, with potential shortening of their otherwise longer life expectancy. 2.4.3 Summary of recommendations on total cardiovascular risk assessment Total cardiovascular risk assessmentTable: No title available.3. DIAGNOSTIC EVALUATION The initial evaluation of a patient with hypertension should (i) confirm the diagnosis of hypertension, (ii) detect causes of secondary hypertension, and (iii) assess CV risk, OD and concomitant clinical conditions. This calls for BP measurement, medical history including family history, physical examination, laboratory investigations and further diagnostic tests. Some of the investigations are needed in all patients; others only in specific patient groups. 3.1 Bood pressure measurement 3.1.1 Office or clinic blood pressure At present, BP can no longer be estimated using a mercury sphygmomanometer in many—although not all—European countries. Auscultatory or oscillometric semiautomatic sphygmomanometers are used instead. These devices should be validated according to standardized protocols and their accuracy should be checked periodically through calibration in a technical laboratory [56]. Measurement of BP at the upper arm is preferred and cuff and bladder dimensions should be adapted to the arm circumference. In the event of a significant (>10 mmHg) and consistent SBP difference between arms, which has been shown to carry an increased CV risk [57], the arm with the higher BP values should be used. A between-arms difference is meaningful if demonstrated by simultaneous arm measurement; if one gets a difference between arms with sequential measurement, it could be due to BP variability. In elderly subjects, diabetic patients and in other conditions in which orthostatic hypotension may be frequent or suspected, it is recommended that BP be measured 1 min and 3 min after assumption of the standing position. Orthostatic hypotension—defined as a reduction in SBP of >20 mmHg or in DBP of >10 mmHg within 3 min of standing—has been shown to carry a worse prognosis for mortality and CV events [58,59]. If feasible, automated recording of multiple BP readings in the office with the patient seated in an isolated room, though providing less information overall, might be considered as a means to improve reproducibility and make office BP values closer to those provided by daytime ABPM or HBPM [60,61]. BP measurements should always be associated with measurement of heart rate, because resting heart rate values independently predict CV morbid or fatal events in several conditions, including hypertension [62,63]. Instructions for correct office BP measurements are summarized in Table 5.TABLE 5: Office blood pressure measurement3.1.2 Out-of-office blood pressure The major advantage of out-of-office BP monitoring is that it provides a large number of BP measurements away from the medical environment, which represents a more reliable assessment of actual BP than office BP. Out-of-office BP is commonly assessed by ABPM or HBPM, usually by self-measurement. A few general principles and remarks hold for the two types of monitoring, in addition to recommendations for office BP measurement [64–67]: The procedure should be adequately explained to the patient, with verbal and written instructions; in addition, self-measurement of BP requires appropriate training under medical supervision. Interpretation of the results should take into account that the reproducibility of out-of-office BP measurements is reasonably good for 24-h, day and night BP averages but less for shorter periods within the 24 hs and for more complex and derived indices [68] ABPM and HBPM provide somewhat different information on the subject's BP status and risk and the two methods should thus be regarded as complementary, rather than competitive or alternative. The correspondence between measurements with ABPM and HBPM is fair to moderate. Office BP is usually higher than ambulatory and home BP and the difference increases as office BP increases. Cut-off values for the definition of hypertension for home and ambulatory BP, according to the ESH Working Group on BP Monitoring, are reported in Table 6[64–67]. Devices should have been evaluated and validated according to international standardized protocols and should be properly maintained and regularly calibrated; at least every 6 months. The validation status can be obtained on dedicated websites. TABLE 6: Definitions of hypertension by office and out-of-office blood pressure levels3.1.2.1. Ambulatory blood pressure monitoring 3.1.2.1.1. Methodological aspects A number of methodological aspects have been addressed by the ESH Working Group on Blood Pressure Monitoring [64,65]. ABPM is performed with the patient wearing a portable BP measuring device, usually on the nondominant arm, for a 24–25 h period, so that it gives information on BP during daily activities and at night during sleep. At the time of fitting of the portable device, the difference between the initial values and those from BP measurement by the operator should not be greater than 5 mmHg. In the event of a larger difference, the ABPM cuff should be removed and fitted again. The patient is instructed to engage in normal activities but to refrain from strenuous exercise and, at the time of cuff inflation, to stop moving and talking and keep the arm still with the cuff at heart level. The patient is asked to provide information in a diary on symptoms and events that may influence BP, in addition to the times of drug ingestion, meals and going to- and rising from bed. In clinical practice, measurements are often made at 15 min intervals during the day and every 30 min overnight; excessive intervals between BP readings should be avoided because they reduce the accuracy of 24-h BP estimates [69]. It may be recommended that measurements be made at the same frequency during the day and night—for example every 20 min throughout. The measurements are downloaded to a computer and a range of analyses can be performed. At least 70% of BPs during daytime and night-time periods should be satisfactory, or else the monitoring should be repeated. The detection of artifactual readings and the handling of outlying values have been subject to debate but, if there are sufficient measurements, editing is not considered necessary and only grossly incorrect readings should be deleted. It is noteworthy that readings may not be accurate when the cardiac rhythm is markedly irregular [70]. 3.1.2.1.2 Daytime, night-time and 24-h blood pressure In addition to the visual plot, average daytime, night-time and 24-h BP are the most commonly used variables in clinical practice. Average daytime and night-time BP can be calculated from the diary on the basis of the times of getting up and going to bed. An alternative method is to use short, fixed time periods, in which the rising and retiring periods—which differ from patient to patient—are eliminated. It has, for example, been shown that average BPs from 10 am to 8 pm and from midnight

Referência(s)