Artigo Revisado por pares

Ground-Ice Wedges: The Dominant Form of Ground-Ice on the North Coast of Alaska

1915; University of Chicago Press; Volume: 23; Issue: 7 Linguagem: Inglês

10.1086/622281

ISSN

1537-5269

Autores

E. de K. Leffingwell,

Tópico(s)

Polar Research and Ecology

Resumo

Previous articleNext article FreeGround-Ice Wedges: The Dominant Form of Ground-Ice on the North Coast of AlaskaE. de K. LeffingwellE. de K. LeffingwellPDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by The Journal of Geology Volume 23, Number 7Oct. - Nov., 1915 Article DOIhttps://doi.org/10.1086/622281 Views: 327Total views on this site Citations: 152Citations are reported from Crossref PDF download Crossref reports the following articles citing this article:R.J. Soare, J.-P. Williams, A.J. Hepburn, F.E.G. Butcher A billion or more years of possible periglacial/glacial cycling in Protonilus Mensae, Mars, Icarus 385 (Oct 2022): 115115.https://doi.org/10.1016/j.icarus.2022.115115M.T. Jorgenson, M.Z. Kanevskiy, J.C. Jorgenson, A. Liljedahl, Y. Shur, H. Epstein, K. Kent, C.G. Griffin, R. Daanen, M. Boldenow, K. Orndahl, C. Witharana, B.M. Jones Rapid transformation of tundra ecosystems from ice-wedge degradation, Global and Planetary Change 216 (Sep 2022): 103921.https://doi.org/10.1016/j.gloplacha.2022.103921Emanuele Forte, Hugh M. French, Rossana Raffi, Ilaria Santin, Mauro Guglielmin Investigations of polygonal patterned ground in continuous Antarctic permafrost by means of ground penetrating radar and electrical resistivity tomography: Some unexpected correlations, Permafrost and Periglacial Processes 33, no.33 (Jun 2022): 226–240.https://doi.org/10.1002/ppp.2156David K. Swanson Permafrost and Draining Lakes in Arctic Alaska, Frontiers for Young Minds 10 (Jun 2022).https://doi.org/10.3389/frym.2022.692218Carli A. Arendt, Jeffrey M. Heikoop, Brent D. Newman, Cathy J. Wilson, Haruko Wainwright, Jitendra Kumar, Christian G. Andersen, Nathan A. Wales, Baptiste Dafflon, Jessica Cherry, Stan D. Wullschleger Increased Arctic NO3− Availability as a Hydrogeomorphic Consequence of Permafrost Degradation and Landscape Drying, Nitrogen 3, no.22 (May 2022): 314–332.https://doi.org/10.3390/nitrogen3020021Yana Tikhonravova, Elena Slagoda, Vladislav Butakov, Ekaterina Koroleva, Galina Simonova, Robert Sysolyatin Isotopic composition of heterogeneous ice wedges in peatlands of the Pur‐Taz interfluve (northern West Siberia), Permafrost and Periglacial Processes 33, no.22 (Feb 2022): 114–128.https://doi.org/10.1002/ppp.2138G. J. Retallack Towards a glacial subdivision of the Ediacaran Period, with an example of the Boston Bay Group, Massachusetts, Australian Journal of Earth Sciences 69, no.22 (Aug 2021): 223–250.https://doi.org/10.1080/08120099.2021.1954088Yuri Shur, Daniel Fortier, M. Torre Jorgenson, Mikhail Kanevskiy, Lutz Schirrmeister, Jens Strauss, Alexander Vasiliev, Melissa Ward Jones Yedoma Permafrost Genesis: Over 150 Years of Mystery and Controversy, Frontiers in Earth Science 9 (Jan 2022).https://doi.org/10.3389/feart.2021.757891Yurij K. Vasil'chuk, Nadine A. Budantseva Holocene ice wedges of the Kolyma Lowland and January paleotemperature reconstructions based on oxygen isotope records, Permafrost and Periglacial Processes 33, no.11 (Sep 2021): 3–17.https://doi.org/10.1002/ppp.2128M. Torre Jorgenson Thermokarst, (Jan 2022): 392–414.https://doi.org/10.1016/B978-0-12-818234-5.00058-4Yana V. Tikhonravova, Viktor V. Rogov, Elena A. Slagoda Genetic Identification Of Ground Ice By Petrographic Method, GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY 14, no.44 (Dec 2021): 20–32.https://doi.org/10.24057/2071-9388-2021-063Tabea Rettelbach, Moritz Langer, Ingmar Nitze, Benjamin Jones, Veit Helm, Johann-Christoph Freytag, Guido Grosse A Quantitative Graph-Based Approach to Monitoring Ice-Wedge Trough Dynamics in Polygonal Permafrost Landscapes, Remote Sensing 13, no.1616 (Aug 2021): 3098.https://doi.org/10.3390/rs13163098Haruko M. Wainwright, Rusen Oktem, Baptiste Dafflon, Sigrid Dengel, John B. Curtis, Margaret S. Torn, Jessica Cherry, Susan S. Hubbard High-Resolution Spatio-Temporal Estimation of Net Ecosystem Exchange in Ice-Wedge Polygon Tundra Using In Situ Sensors and Remote Sensing Data, Land 10, no.77 (Jul 2021): 722.https://doi.org/10.3390/land10070722Samuel Gagnon, Michel Allard Modeled (1990–2100) variations in active‐layer thickness and ice‐wedge activity near Salluit, Nunavik (Canada), Permafrost and Periglacial Processes 32, no.33 (Apr 2021): 447–467.https://doi.org/10.1002/ppp.2109S. Wetterich, H. Meyer, M. Fritz, G. Mollenhauer, J. Rethemeyer, A. Kizyakov, L. Schirrmeister, T. Opel Northeast Siberian Permafrost Ice‐Wedge Stable Isotopes Depict Pronounced Last Glacial Maximum Winter Cooling, Geophysical Research Letters 48, no.77 (Apr 2021).https://doi.org/10.1029/2020GL092087Christopher R. Burn, Antoni G. Lewkowicz, M. Alice Wilson Long‐term field measurements of climate‐induced thaw subsidence above ice wedges on hillslopes, western Arctic Canada, Permafrost and Periglacial Processes 32, no.22 (May 2021): 261–276.https://doi.org/10.1002/ppp.2113Frederick E. Nelson, Hugh M. French Stephen Taber and the development of North American cryostratigraphy and periglacial geomorphology, Permafrost and Periglacial Processes 32, no.22 (Mar 2021): 213–230.https://doi.org/10.1002/ppp.2096R.J. Soare, S.J. Conway, J.-P. Williams, M. Philippe, L.E. Mc Keown, E. Godin, J. Hawkswell Possible ice-wedge polygonisation in Utopia Planitia, Mars and its latitudinal gradient of distribution, Icarus 358 (Apr 2021): 114208.https://doi.org/10.1016/j.icarus.2020.114208Yuri Shur, Benjamin M. Jones, Mikhail Kanevskiy, Torre Jorgenson, Melissa K. Ward Jones, Daniel Fortier, Eva Stephani, Alexander Vasiliev Fluvio‐thermal erosion and thermal denudation in the yedoma region of northern Alaska: Revisiting the Itkillik River exposure, Permafrost and Periglacial Processes 32, no.22 (Mar 2021): 277–298.https://doi.org/10.1002/ppp.2105R.J. Soare, S.J. Conway, J.-P. Williams, A.J. Hepburn Possible polyphase periglaciation and glaciation, adjacent to the, Moreux impact-crater, Mars, Icarus 8 (Mar 2021): 114401.https://doi.org/10.1016/j.icarus.2021.114401Chandi Witharana, Md Abul Ehsan Bhuiyan, Anna K. Liljedahl, Mikhail Kanevskiy, Torre Jorgenson, Benjamin M. Jones, Ronald Daanen, Howard E. Epstein, Claire G. Griffin, Kelcy Kent, Melissa K. Ward Jones An Object-Based Approach for Mapping Tundra Ice-Wedge Polygon Troughs from Very High Spatial Resolution Optical Satellite Imagery, Remote Sensing 13, no.44 (Feb 2021): 558.https://doi.org/10.3390/rs13040558Dylan R. Harp, Vitaly Zlotnik, Charles J. Abolt, Bob Busey, Sofia T. Avendaño, Brent D. Newman, Adam L. Atchley, Elchin Jafarov, Cathy J. Wilson, Katrina E. Bennett New insights into the drainage of inundated ice-wedge polygons using fundamental hydrologic principles, The Cryosphere 15, no.88 (Aug 2021): 4005–4029.https://doi.org/10.5194/tc-15-4005-2021Richard J. Soare, Jean-Pierre Williams, Susan J. Conway, M.Ramy El-Maarry Pingo-like mounds and possible polyphase periglaciation/glaciation at/adjacent to the Moreux impact crater, (Jan 2021): 407–435.https://doi.org/10.1016/B978-0-12-820245-6.00014-8Charles J. Abolt, Michael H. Young High-resolution mapping of spatial heterogeneity in ice wedge polygon geomorphology near Prudhoe Bay, Alaska, Scientific Data 7, no.11 (Mar 2020).https://doi.org/10.1038/s41597-020-0423-9Chandi Witharana, Md Abul Ehsan Bhuiyan, Anna K. Liljedahl, Mikhail Kanevskiy, Howard E. Epstein, Benjamin M. Jones, Ronald Daanen, Claire G. Griffin, Kelcy Kent, Melissa K. Ward Jones Understanding the synergies of deep learning and data fusion of multispectral and panchromatic high resolution commercial satellite imagery for automated ice-wedge polygon detection, ISPRS Journal of Photogrammetry and Remote Sensing 170 (Dec 2020): 174–191.https://doi.org/10.1016/j.isprsjprs.2020.10.010K. P. Wickland, M. T. Jorgenson, J. C. Koch, M. Kanevskiy, R. G. Striegl Carbon Dioxide and Methane Flux in a Dynamic Arctic Tundra Landscape: Decadal‐Scale Impacts of Ice Wedge Degradation and Stabilization, Geophysical Research Letters 47, no.2222 (Nov 2020).https://doi.org/10.1029/2020GL089894Ylva Sjöberg, Matthias B. Siewert, Ashley C.A. Rudy, Michel Paquette, Frédéric Bouchard, Julie Malenfant‐Lepage, Michael Fritz Hot trends and impact in permafrost science, Permafrost and Periglacial Processes 31, no.44 (Apr 2020): 461–471.https://doi.org/10.1002/ppp.2047Trevor J. Porter, Thomas Opel Recent advances in paleoclimatological studies of Arctic wedge‐ and pore‐ice stable‐water isotope records, Permafrost and Periglacial Processes 31, no.33 (Apr 2020): 429–441.https://doi.org/10.1002/ppp.2052Weixing Zhang, Anna K. Liljedahl, Mikhail Kanevskiy, Howard E. Epstein, Benjamin M. Jones, M. Torre Jorgenson, Kelcy Kent Transferability of the Deep Learning Mask R-CNN Model for Automated Mapping of Ice-Wedge Polygons in High-Resolution Satellite and UAV Images, Remote Sensing 12, no.77 (Mar 2020): 1085.https://doi.org/10.3390/rs12071085Melissa K. Ward Jones, Wayne H. Pollard, Frances Amyot Impacts of Degrading Ice‐Wedges on Ground Temperatures in a High Arctic Polar Desert System, Journal of Geophysical Research: Earth Surface 125, no.33 (Mar 2020).https://doi.org/10.1029/2019JF005173Charles J. Abolt, Michael H. Young, Adam L. Atchley, Dylan R. Harp, Ethan T. Coon Feedbacks Between Surface Deformation and Permafrost Degradation in Ice Wedge Polygons, Arctic Coastal Plain, Alaska, Journal of Geophysical Research: Earth Surface 125, no.33 (Mar 2020).https://doi.org/10.1029/2019JF005349J. van Huissteden The Role of Ground Ice, (Jan 2020): 107–177.https://doi.org/10.1007/978-3-030-31379-1_3Yurij Kirillovich Vasil'chuk Syngenetic and cyclical yedoma strata of Northern Yakutia, Арктика и Антарктика , no.22 (Feb 2020): 34–64.https://doi.org/10.7256/2453-8922.2020.2.32917Andrei Kartoziia Assessment of the Ice Wedge Polygon Current State by Means of UAV Imagery Analysis (Samoylov Island, the Lena Delta), Remote Sensing 11, no.1313 (Jul 2019): 1627.https://doi.org/10.3390/rs11131627V.V. Garayshin, D.J. Nicolsky, V.E. Romanovsky Numerical modeling of two-dimensional temperature field dynamics across non-deforming ice-wedge polygons, Cold Regions Science and Technology 161 (May 2019): 115–128.https://doi.org/10.1016/j.coldregions.2018.12.004Bhavna Arora, Haruko M. Wainwright, Dipankar Dwivedi, Lydia J.S. Vaughn, John B. Curtis, Margaret S. Torn, Baptiste Dafflon, Susan S. Hubbard Evaluating temporal controls on greenhouse gas (GHG) fluxes in an Arctic tundra environment: An entropy-based approach, Science of The Total Environment 649 (Feb 2019): 284–299.https://doi.org/10.1016/j.scitotenv.2018.08.251Sebastian Wetterich, Natalia Rudaya, Vladislav Kuznetsov, Fedor Maksimov, Thomas Opel, Hanno Meyer, Frank Günther, Anatoly Bobrov, Elena Raschke, Heike H. Zimmermann, Jens Strauss, Anna Starikova, Margret Fuchs, Lutz Schirrmeister , Quaternary Research 92, no.22 ( 2019): 530.https://doi.org/10.1017/qua.2019.6Sebastian Wetterich, Thomas A. Davidson, Anatoly Bobrov, Thomas Opel, Torben Windirsch, Kasper L. Johansen, Ivan González-Bergonzoni, Anders Mosbech, Erik Jeppesen Stable isotope signatures of Holocene syngenetic permafrost trace seabird presence in the Thule District (NW Greenland), Biogeosciences 16, no.2121 (Nov 2019): 4261–4275.https://doi.org/10.5194/bg-16-4261-2019Charles J. Abolt, Michael H. Young, Adam L. Atchley, Cathy J. Wilson Brief communication: Rapid machine-learning-based extraction and measurement of ice wedge polygons in high-resolution digital elevation models, The Cryosphere 13, no.11 (Jan 2019): 237–245.https://doi.org/10.5194/tc-13-237-2019R. J. Soare, S. J. Conway, C. Gallagher, J. M. Dohm, D. Reiss Periglacial complexes and the deductive evidence of ‘wet’-flows at the Hale impact crater, Mars, Geological Society, London, Special Publications 467, no.11 (Mar 2018): 211–231.https://doi.org/10.1144/SP467.7H. Brendan O'Neill, Hanne H. Christiansen Detection of Ice Wedge Cracking in Permafrost Using Miniature Accelerometers, Journal of Geophysical Research: Earth Surface 123, no.44 (Apr 2018): 642–657.https://doi.org/10.1002/2017JF004343Maura Lousada, Pedro Pina, Gonçalo Vieira, Lourenço Bandeira, Carla Mora Evaluation of the use of very high resolution aerial imagery for accurate ice-wedge polygon mapping (Adventdalen, Svalbard), Science of The Total Environment 615 (Feb 2018): 1574–1583.https://doi.org/10.1016/j.scitotenv.2017.09.153Sergei Amelchugov, Oksana Gofman, Oksana S Mitskevich, Elena Danilovich, A. Borodinecs, V. Sergeev, N. Vatin Building security in the arctic region of eastern Siberia, MATEC Web of Conferences 245 (Dec 2018): 03022.https://doi.org/10.1051/matecconf/201824503022Charles J. Abolt, Michael H. Young, Adam L. Atchley, Dylan R. Harp Microtopographic control on the ground thermal regime in ice wedge polygons, The Cryosphere 12, no.66 (Jun 2018): 1957–1968.https://doi.org/10.5194/tc-12-1957-2018Claire Bernard-Grand'Maison, Wayne Pollard An estimate of ice wedge volume for a High Arctic polar desert environment, Fosheim Peninsula, Ellesmere Island, The Cryosphere 12, no.1111 (Nov 2018): 3589–3604.https://doi.org/10.5194/tc-12-3589-2018Mikhail Kanevskiy, Yuri Shur, Torre Jorgenson, Dana R.N. Brown, Nataliya Moskalenko, Jerry Brown, Donald A. Walker, Martha K. Raynolds, Marcel Buchhorn Degradation and stabilization of ice wedges: Implications for assessing risk of thermokarst in northern Alaska, Geomorphology 297 (Nov 2017): 20–42.https://doi.org/10.1016/j.geomorph.2017.09.001L.M. Brooker, M.R. Balme, S.J. Conway, A. Hagermann, A.M. Barrett, G.S. Collins, R.J. Soare CLASTIC POLYGONAL NETWORKS AROUND LYOT CRATER, MARS: POSSIBLE FORMATION MECHANISMS FROM MORPHOMETRIC ANALYSIS, Icarus (Nov 2017).https://doi.org/10.1016/j.icarus.2017.11.022Franck Montmessin, Michael D. Smith, Yves Langevin, Michael T. Mellon, Anna Fedorova The Water Cycle, (Jun 2017): 338–373.https://doi.org/10.1017/9781139060172.011Yurij K. Vasil'chuk, Alla C. Vasil'chuk Validity of radiocarbon ages of Siberian yedoma, GeoResJ 13 (Jun 2017): 83–95.https://doi.org/10.1016/j.grj.2017.02.004Baptiste Dafflon, Rusen Oktem, John Peterson, Craig Ulrich, Anh Phuong Tran, Vladimir Romanovsky, Susan S. Hubbard Coincident aboveground and belowground autonomous monitoring to quantify covariability in permafrost, soil, and vegetation properties in Arctic tundra, Journal of Geophysical Research: Biogeosciences 122, no.66 (Jun 2017): 1321–1342.https://doi.org/10.1002/2016JG003724 , ( 2017): 423.https://doi.org/10.1002/9781119132820.refsAudrey E. Steedman, Trevor C. Lantz, Steven V. Kokelj Spatio-Temporal Variation in High-Centre Polygons and Ice-Wedge Melt Ponds, Tuktoyaktuk Coastlands, Northwest Territories, Permafrost and Periglacial Processes 28, no.11 (Jan 2016): 66–78.https://doi.org/10.1002/ppp.1880Charles J. Abolt, Michael H. Young, Todd G. Caldwell Numerical Modelling of Ice-Wedge Polygon Geomorphic Transition, Permafrost and Periglacial Processes 28, no.11 (Aug 2016): 347–355.https://doi.org/10.1002/ppp.1909Norbert Pirk, Jakob Sievers, Jordan Mertes, Frans-Jan W. Parmentier, Mikhail Mastepanov, Torben R. Christensen Spatial variability of CO2 uptake in polygonal tundra: assessing low-frequency disturbances in eddy covariance flux estimates, Biogeosciences 14, no.1212 (Jun 2017): 3157–3169.https://doi.org/10.5194/bg-14-3157-2017Heike Hildegard Zimmermann, Elena Raschke, Laura Saskia Epp, Kathleen Rosmarie Stoof-Leichsenring, Georg Schwamborn, Lutz Schirrmeister, Pier Paul Overduin, Ulrike Herzschuh Sedimentary ancient DNA and pollen reveal the composition of plant organic matter in Late Quaternary permafrost sediments of the Buor Khaya Peninsula (north-eastern Siberia), Biogeosciences 14, no.33 (Feb 2017): 575–596.https://doi.org/10.5194/bg-14-575-2017Thomas Opel, Sebastian Wetterich, Hanno Meyer, Alexander Y. Dereviagin, Margret C. Fuchs, Lutz Schirrmeister Ground-ice stable isotopes and cryostratigraphy reflect late Quaternary palaeoclimate in the Northeast Siberian Arctic (Oyogos Yar coast, Dmitry Laptev Strait), Climate of the Past 13, no.66 (Jun 2017): 587–611.https://doi.org/10.5194/cp-13-587-2017Haruko M. Wainwright, Anna K. Liljedahl, Baptiste Dafflon, Craig Ulrich, John E. Peterson, Alessio Gusmeroli, Susan S. Hubbard Mapping snow depth within a tundra ecosystem using multiscale observations and Bayesian methods, The Cryosphere 11, no.22 (Apr 2017): 857–875.https://doi.org/10.5194/tc-11-857-2017Anna K. Liljedahl, Julia Boike, Ronald P. Daanen, Alexander N. Fedorov, Gerald V. Frost, Guido Grosse, Larry D. Hinzman, Yoshihiro Iijma, Janet C. Jorgenson, Nadya Matveyeva, Marius Necsoiu, Martha K. Raynolds, Vladimir E. Romanovsky, Jörg Schulla, Ken D. Tape, Donald A. Walker, Cathy J. Wilson, Hironori Yabuki, Donatella Zona Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology, Nature Geoscience 9, no.44 (Mar 2016): 312–318.https://doi.org/10.1038/ngeo2674Baptiste Dafflon, Susan Hubbard, Craig Ulrich, John Peterson, Yuxin Wu, Haruko Wainwright, Timothy J. Kneafsey Geophysical estimation of shallow permafrost distribution and properties in an ice-wedge polygon-dominated Arctic tundra region, GEOPHYSICS 81, no.11 (Jan 2016): WA247–WA263.https://doi.org/10.1190/geo2015-0175.1Mikhail Kanevskiy, Yuri Shur, Jens Strauss, Torre Jorgenson, Daniel Fortier, Eva Stephani, Alexander Vasiliev Patterns and rates of riverbank erosion involving ice-rich permafrost (yedoma) in northern Alaska, Geomorphology 253 (Jan 2016): 370–384.https://doi.org/10.1016/j.geomorph.2015.10.023M. T. Jorgenson, M. Kanevskiy, Y. Shur, N. Moskalenko, D. R. N. Brown, K. Wickland, R. Striegl, J. Koch Role of ground ice dynamics and ecological feedbacks in recent ice wedge degradation and stabilization, Journal of Geophysical Research: Earth Surface 120, no.1111 (Nov 2015): 2280–2297.https://doi.org/10.1002/2015JF003602Julian B. Murton, Tomasz Goslar, Mary E. Edwards, Mark D. Bateman, Petr P. Danilov, Grigoriy N. Savvinov, Stanislav V. Gubin, Bassam Ghaleb, James Haile, Mikhail Kanevskiy, Anatoly V. Lozhkin, Alexei V. Lupachev, Della K. Murton, Yuri Shur, Alexei Tikhonov, Alla C. Vasil'chuk, Yurij K. Vasil'chuk, Stephen A. Wolfe Palaeoenvironmental Interpretation of Yedoma Silt (Ice Complex) Deposition as Cold-Climate Loess, Duvanny Yar, Northeast Siberia, Permafrost and Periglacial Processes 26, no.33 (Sep 2015): 208–288.https://doi.org/10.1002/ppp.1843Gregory J. Retallack, Brooklyn N. Gose, Jeffrey T. Osterhout Periglacial paleosols and Cryogenian paleoclimate near Adelaide, South Australia, Precambrian Research 263 (Jul 2015): 1–18.https://doi.org/10.1016/j.precamres.2015.03.002Haruko M. Wainwright, Baptiste Dafflon, Lydia J. Smith, Melanie S. Hahn, John B. Curtis, Yuxin Wu, Craig Ulrich, John E. Peterson, Margaret S. Torn, Susan S. Hubbard Identifying multiscale zonation and assessing the relative importance of polygon geomorphology on carbon fluxes in an Arctic tundra ecosystem, Journal of Geophysical Research: Biogeosciences 120, no.44 (Apr 2015): 788–808.https://doi.org/10.1002/2014JG002799R.J. Soare, S.J. Conway, J.M. Dohm Possible ice-wedge polygons and recent landscape modification by “wet” periglacial processes in and around the Argyre impact basin, Mars, Icarus 233 (May 2014): 214–228.https://doi.org/10.1016/j.icarus.2014.01.034Baptiste Dafflon, Susan S. Hubbard, Craig Ulrich, John E. Peterson Electrical Conductivity Imaging of Active Layer and Permafrost in an Arctic Ecosystem, through Advanced Inversion of Electromagnetic Induction Data, Vadose Zone Journal 12, no.44 (Oct 2013): vzj2012.0161.https://doi.org/10.2136/vzj2012.0161Baptiste Dafflon, Susan S. Hubbard, Craig Ulrich, John E. Peterson, Haruko Wainwright, Yuxin Wu Estimating active layer, ice-wedge, and permafrost property distributions in Arctic ecosystem using electrical conductivity imaging, (Aug 2013): 4444–4449.https://doi.org/10.1190/segam2013-0787.1Rishitosh K. Sinha, Sripada V. S. Murty Geomorphic signatures of glacial activity in the Alba Patera volcanic province: Implications for recent frost accumulation on Mars, Journal of Geophysical Research: Planets 118, no.88 (Aug 2013): 1609–1631.https://doi.org/10.1002/jgre.20113 References, (Jun 2013): 388–448.https://doi.org/10.1002/9781118684931.refsS. S. Hubbard, C. Gangodagamage, B. Dafflon, H. Wainwright, J. Peterson, A. Gusmeroli, C. Ulrich, Y. Wu, C. Wilson, J. Rowland, C. Tweedie, S. D. Wullschleger Quantifying and relating land-surface and subsurface variability in permafrost environments using LiDAR and surface geophysical datasets, Hydrogeology Journal 21, no.11 (Dec 2012): 149–169.https://doi.org/10.1007/s10040-012-0939-yN.I. Shiklomanov, F.E. Nelson 8.22 Thermokarst and Civil Infrastructure, (Jan 2013): 354–373.https://doi.org/10.1016/B978-0-12-374739-6.00214-1J. Murton PERMAFROST AND PERIGLACIAL FEATURES | Ice Wedges and Ice-Wedge Casts, (Jan 2013): 436–451.https://doi.org/10.1016/B978-0-444-53643-3.00097-2M. Kanevskiy, Y. Shur, M.T. Jorgenson, C.-L. Ping, G.J. Michaelson, D. Fortier, E. Stephani, M. Dillon, V. Tumskoy Ground ice in the upper permafrost of the Beaufort Sea coast of Alaska, Cold Regions Science and Technology 85 (Jan 2013): 56–70.https://doi.org/10.1016/j.coldregions.2012.08.002Timothy W. Haltigin, Wayne H. Pollard, Pierre Dutilleul, Gordon R. Osinski Geometric Evolution of Polygonal Terrain Networks in the Canadian High Arctic: Evidence of Increasing Regularity over Time, Permafrost and Periglacial Processes 23, no.33 (Aug 2012): 178–186.https://doi.org/10.1002/ppp.1741J. S. Levy, A. G. Fountain, M. N. Gooseff, K. A. Welch, W. B. Lyons Water tracks and permafrost in Taylor Valley, Antarctica: Extensive and shallow groundwater connectivity in a cold desert ecosystem, Geological Society of America Bulletin 123, no.11-1211-12 (Aug 2011): 2295–2311.https://doi.org/10.1130/B30436.1Frederick E. Nelson “America’s Glory Road” … On Ice: Permafrost and the Development of the Alcan Highway, 1942–1943, (Dec 2010): 643–661.https://doi.org/10.1007/978-90-481-9920-4_37T. Orloff, M. Kreslavsky, E. Asphaug, J. Korteniemi Boulder movement at high northern latitudes of Mars, Journal of Geophysical Research 116, no.E11E11 (Nov 2011).https://doi.org/10.1029/2011JE003811J. S. Levy, J. W. Head, D. R. Marchant Gullies, polygons and mantles in Martian permafrost environments: cold desert landforms and sedimentary processes during recent Martian geological history, Geological Society, London, Special Publications 354, no.11 (May 2011): 167–182.https://doi.org/10.1144/SP354.10Joseph S. Levy, David R. Marchant, James W. Head Thermal contraction crack polygons on Mars: A synthesis from HiRISE, Phoenix, and terrestrial analog studies, Icarus 206, no.11 (Mar 2010): 229–252.https://doi.org/10.1016/j.icarus.2009.09.005J.N. Hutchinson Relict sand wedges in soliflucted London Clay at Wimbledon, London, UK, Proceedings of the Geologists' Association 121, no.44 (Jan 2010): 444–454.https://doi.org/10.1016/j.pgeola.2010.08.001J. G. A. Croll The role of thermal ratcheting in pavement failures, Proceedings of the Institution of Civil Engineers - Transport 162, no.33 (Aug 2009): 127–140.https://doi.org/10.1680/tran.2009.162.3.127David P. Lusch, Kristy E. Stanley, Randall J. Schaetzl, Anthony D. Kendall, Remke L. Van Dam, Asger Nielsen, Bradley E. Blumer, Trevor C. Hobbs, Jonathan K. Archer, Jennifer L. F. Holmstadt, Christopher L. May Characterization and Mapping of Patterned Ground in the Saginaw Lowlands, Michigan: Possible Evidence for Late-Wisconsin Permafrost, Annals of the Association of American Geographers 99, no.33 (Jul 2009): 445–466.https://doi.org/10.1080/00045600902931629Paul F. Hoffman, Zheng-Xiang Li A palaeogeographic context for Neoproterozoic glaciation, Palaeogeography, Palaeoclimatology, Palaeoecology 277, no.3-43-4 (Jun 2009): 158–172.https://doi.org/10.1016/j.palaeo.2009.03.013James G.A Croll Thermally induced pulsatile motion of solids, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 465, no.21032103 (Nov 2008): 791–807.https://doi.org/10.1098/rspa.2008.0151Michael T. Mellon, Michael C. Malin, Raymond E. Arvidson, Mindi L. Searls, Hanna G. Sizemore, Tabatha L. Heet, Mark T. Lemmon, H. Uwe Keller, John Marshall The periglacial landscape at the Phoenix landing site, Journal of Geophysical Research 114 (Dec 2009).https://doi.org/10.1029/2009JE003418Joseph S. Levy, James W. Head, David R. Marchant The role of thermal contraction crack polygons in cold-desert fluvial systems, Antarctic Science 20, no.66 (Jun 2008): 565–579.https://doi.org/10.1017/S0954102008001375Christopher J. Ellis, Line Rochefort, Gilles Gauthier, Reinhard Pienitz Paleoecological Evidence for Transitions between Contrasting Landforms in a Polygon-Patterned High Arctic Wetland, Arctic, Antarctic, and Alpine Research 40, no.44 (Nov 2008): 624–637.https://doi.org/10.1657/1523-0430(07-059)[ELLIS]2.0.CO;2Michael T. Mellon, Raymond E. Arvidson, Jeffrey J. Marlow, Roger J. Phillips, Erik Asphaug Periglacial landforms at the Phoenix landing site and the northern plains of Mars, Journal of Geophysical Research 113 (Nov 2008).https://doi.org/10.1029/2007JE003039Michael T. Mellon, William V. Boynton, William C. Feldman, Raymond E. Arvidson, Timothy N. Titus, Joshua L. Bandfield, Nathaniel E. Putzig, Hanna G. Sizemore A prelanding assessment of the ice table depth and ground ice characteristics in Martian permafrost at the Phoenix landing site, Journal of Geophysical Research 113 (Nov 2008).https://doi.org/10.1029/2007JE003067Nicole J. Couture, Wayne H. Pollard Modelling geomorphic response to climatic change, Climatic Change 85, no.3-43-4 (Oct 2007): 407–431.https://doi.org/10.1007/s10584-007-9309-5Daniel Fortier, Michel Allard, Yuri Shur Observation of rapid drainage system development by thermal erosion of ice wedges on Bylot Island, Canadian Arctic Archipelago, Permafrost and Periglacial Processes 18, no.33 (Jan 2007): 229–243.https://doi.org/10.1002/ppp.595J. Murton PERIGLACIAL LANDFORMS | Ice Wedges and Ice Wedge Casts, (Jan 2007): 2153–2170.https://doi.org/10.1016/B0-44-452747-8/00108-3S. van Gasselt, D. Reiss, A. K. Thorpe, G. Neukum Seasonal variations of polygonal thermal contraction crack patterns in a south polar trough, Mars, Journal of Geophysical Research: Planets 110, no.E8E8 (Aug 2005): n/a–n/a.https://doi.org/10.1029/2004JE002385Zhenhan Wu, Patrick J Barosh, Daogong Hu, Zhonghai Wu, Xitao Zhao, Peisheng Ye, Wan Jiang Hazards posed by active major faults along the Golmud–Lhasa railway route, Tibetan Plateau, China, Engineering Geology 74, no.3-43-4 (Aug 2004): 163–182.https://doi.org/10.1016/j.enggeo.2004.02.004Daniel Fortier, Michel Allard Late Holocene syngenetic ice-wedge polygons development, Bylot Island, Canadian Arctic Archipelago, Canadian Journal of Earth Sciences 41, no.88 (Aug 2004): 997–1012.https://doi.org/10.1139/e04-031Ole Humlum, Arne Instanes, Johan Ludvig Sollid Permafrost in Svalbard: a review of research history, climatic background and engineering challenges, Polar Research 22, no.22 (Dec 2003): 191–215.https://doi.org/10.1111/j.1751-8369.2003.tb00107.xHugh French The development of periglacial geomorphology: 1- up to 1965, Permafrost and Periglacial Processes 14, no.11 (Jan 2003): 29–60.https://doi.org/10.1002/ppp.438Adam C. Maloof, James B. Kellogg, Alison M. Anders Neoproterozoic sand wedges: crack formation in frozen soils under diurnal forcing during a snowball Earth, Earth and Planetary Science Letters 204, no.1-21-2 (Nov 2002): 1–15.https://doi.org/10.1016/S0012-821X(02)00960-3Lawrence J. Plug, B. T. Werner Fracture networks in frozen ground, Journal of Geophysical Research: Solid Earth 106, no.B5B5 (May 2001): 8599–8613.https://doi.org/10.1029/2000JB900320Philippe Masson, Michael H. Carr, François Costard, Ronald Greeley, Ernst Hauber, Ralf Jaumann Geomorphologic Evidence for Liquid Water, (Jan 2001): 333–364.https://doi.org/10.1007/978-94-017-1035-0_12David Liverman, Norm Catto, Martin Batterson, Catriona Mackenzie, Mandy Munro-Stasiuk, Sharon Scott, Anne Sommerville Evidence of Late Glacial Permafrost in Newfoundland, Quaternary International 68-71 (Jun 2000): 163–174.https://doi.org/10.1016/S1040-6182(00)00041-0J. Ross MacKay Thermally induced movements in ice-wedge polygons, western arctic coast: a long-term study, Géographie physique et Quaternaire 54, no.11 (Oct 2002): 41–68.https://doi.org/10.7202/004846arJ. Ross Mackay Pingo Growth and collapse, Tuktoyaktuk Peninsula Area, Western Arctic Coast, Canada: a long-term field study, Géographie physique et Quaternaire 52, no.33 (Oct 2002): 271–323.https://doi.org/10.7202/004847arMichael T. Mellon Small-scale polygonal features on Mars: Seasonal thermal contraction cracks in permafrost, Journal of Geophysical Research: Planets 102, no.E11E11 (Nov 1997): 25617–25628.https://doi.org/10.1029/97JE02582Harald Svensson Frost-Fissure Patterns in the Nordic Countries, Geografiska Annaler: Series A, Physical Geography 74, no.2-32-3 (Aug 2017): 207–218.https://doi.org/10.1080/04353676.1992.11880363Adrian E. Scheidegger Theory of Niveal, Glacial, and Periglacial Features, (Jan 1991): 365–399.https://doi.org/10.1007/978-3-642-75659-7_7Timothy J. Parker, R. Stephen Saunders, Dale M. Schneeberger Transitional morphology in West Deuteronilus Mensae, Mars: Implications for modification of the lowland/upland boundary, Icarus 82, no.11 (Nov 1989): 111–145.https://doi.org/10.1016/0019-1035(89)90027-4D. G. Harry, J. S. Gozdzik Ice wedges: Growth, thaw transformation, and palaeoenvironmental significance, Journal of Quaternary Science 3, no.11 (Jan 1988): 39–55.https://doi.org/10.1002/jqs.3390030107S.C. Zoltai PEATLANDS AND MARSHES IN THE WETLAND REGIONS OF CANADA, Memoirs of the Entomological Society of Canada 119, no.S140S140 (May 2012): 5–13.https://doi.org/10.4039/entm119140005-1Jean-Claude Dionne Réseaux reliques de polygones de tourbe, moyenne et basse Côte-Nord du Saint-Laurent, Québec, Géographie physique et Quaternaire 37, no.22 (Nov 2007): 127–146.https://doi.org/10.7202/032510arMax Deynoux Periglacial polygonal structures and sand wedges in the late precambrian glacial formations of the taoudeni basin in Adrar of Mauretania (West Africa), Palaeogeography, Palaeoclimatology, Palaeoecology 39, no.1-21-2 (Sep 1982): 55–70.https://doi.org/10.1016/0031-0182(82)90072-4A. L. Washburn Periglaziale Forschung in Revue, Geologische Rundschau 70, no.22 (Jun 1981): 664–690.https://doi.org/10.1007/BF01822143James C. Pechmann The origin of polygonal troughs on the Northern Plains of Mars, Icarus 42, no.22 (May 1980): 185–210.https://doi.org/10.1016/0019-1035(80)90071-8A.L. Washburn Permafrost features as evidence of climatic change, Earth-Science Reviews 15, no.44 (Apr 1980): 327–402.https://doi.org/10.1016/0012-8252(80)90114-2 Bibliography, (Jan 1979): 290–305.https://doi.org/10.1016/B978-0-408-10735-8.50013-3W. Alan Gell Ice-wedge Ice, Mackenzie Delta-Tuktoyaktuk Peninsula Area, N.W.T., Canada, Journal of Glaciology 20, no.8484 (Jan 2017): 555–562.https://doi.org/10.3189/S0022143000020955H.‐P. Blume, R. Hoffmann Entstehung und pedologische Wirkung glaziärer Frostspalten einer norddeutschen Moränenlandschaft, Zeitschrift für Pflanzenernährung und Bodenkunde 140, no.66 (Jan 2007): 719–732.https://doi.org/10.1002/jpln.19771400613Jean-Claude Dionne Paleoclimatic significance of late Pleistocene ice-wedge casts in Southern Quebec, Canada, Palaeogeography, Palaeoclimatology, Palaeoecology 17, no.11 (Feb 1975): 65–76.https://doi.org/10.1016/0031-0182(75)90030-9LEIF CHRISTENSEN Crop-marks revealing large-scale patterned ground structures in cultivated areas, southwestern Jutland, Denmark, Boreas 3, no.44 (Jan 2008): 153–180.https://doi.org/10.1111/j.1502-3885.1974.tb00674.xG. J. Wainwright, G. W. Dimbleby, A. Evans, J. G. Evans The Excavation of a Neolithic Settlement on Broome Heath, Ditchingham, Norfolk, England, Proceedings of the Prehistoric Society 38 (May 2014): 1–97.https://doi.org/10.1017/S0079497X00012056Peter Friend, N. E. Odell, Silvio Zavatti Obituary, Polar Record 16, no.101101 (Oct 2009): 281–286.https://doi.org/10.1017/S0032247400062999J. ROSS MACKAY THE WORLD OF UNDERGROUND ICE, Annals of the Association of American Geographers 62, no.11 (Mar 2010): 1–22.https://doi.org/10.1111/j.1467-8306.1972.tb00839.xAlan V. Morgan Polygonal Patterned Ground of Late Weichselian Age in the Area North and West of Wolverhampton, England, Geografiska Annaler: Series A, Physical Geography 53, no.3-43-4 (Aug 2017): 146–156.https://doi.org/10.1080/04353676.1971.11879842Anders Rapp, G. Michael Clark Large Nonsorted Polygons in Padjelanta National Park, Swedish Lappland, Geografiska Annaler: Series A, Physical Geography 53, no.22 (Aug 2017): 71–85.https://doi.org/10.1080/04353676.1971.11879836Allan S. Potts Fossil Cryonival Features in Central Wales, Geografiska Annaler: Series A, Physical Geography 53, no.11 (Aug 2017): 39–51.https://doi.org/10.1080/04353676.1971.11879833André Cailleux Ground-ice wedges interpreted by A. von Bunge (1884) in Siberia, Journal of Glaciology 10, no.6060 (Jan 2017): 410–411.https://doi.org/10.3189/S0022143000022164James B. Benedict Frost Cracking in the Colorado Front Range, Geografiska Annaler: Series A, Physical Geography 52, no.22 (Aug 2017): 87–93.https://doi.org/10.1080/04353676.1970.11879812Adrian E. Scheidegger Niveal Effects, (Jan 1970): 346–382.https://doi.org/10.1007/978-3-662-01025-9_7Eric A. Colhoun Early Discoverers XXIX: Early Record and Interpretation of Ice-wedge Pseudomorph in County Londonderry, Northern Ireland, By J. R. Kilroe, Journal of Glaciology 9, no.5757 (Jan 2017): 391–392.https://doi.org/10.3189/S0022143000022917Michael J. Bovis The Interior Mountains and Plateaus, (): 469–515.https://doi.org/10.1130/DNAG-CENT-v2.469L. David Carter, J. Alan Heginbottom, Ming-ko Woo Arctic Lowlands, (): 583–628.https://doi.org/10.1130/DNAG-CENT-v2.583Troy L. Péwé Permafrost, (): 277–298.https://doi.org/10.1130/DNAG-CENT-v3.277F.Alton Wade, Jane Negus De Wys Permafrost features on the martian surface, Icarus 9, no.1-31-3 (Jan 1968): 175–185.https://doi.org/10.1016/0019-1035(68)90011-0Harald Svensson Jordskalven vid Hallandsåsen I Februari 1966, Geologiska Foereningan i Stockholm. Foerhandlingar 89, no.22 (May 1967): 151–180.https://doi.org/10.1080/11035896709448362John McManus An ice-wedge and associated phenomena in the Lower Limestone Series of Fife, Scottish Journal of Geology 2, no.33 (Jun 2022): 259–264.https://doi.org/10.1144/sjg02030259E. Mückenhausen, L. De Leenheer Bodentypen und Bodenarten, (Jan 1966): 23–179.https://doi.org/10.1007/978-3-7091-8197-3_2 David S. McCulloch , Dwight W. Taylor , and Meyer Rubin Stratigraphy, Non-Marine Mollusks, and Radiometric Dates from Quaternary Deposits in the Kotzebue Sound Area, Western Alaska, The Journal of Geology 73, no.33 (Sep 2015): 442–453.https://doi.org/10.1086/627076Edward Watson Periglacial structures in the Aberystwyth region of Central Wales, Proceedings of the Geologists' Association 76, no.44 (Jan 1965): 443–IN12.https://doi.org/10.1016/S0016-7878(65)80043-8E. A. Fitzpatrick An introduction to the Periglacial geomorphology of Scotland, Scottish Geographical Magazine 74, no.11 (Feb 2008): 28–36.https://doi.org/10.1080/00369225808735697J. SMITH SOME MOVING SOILS IN SPITSBERGEN, Journal of Soil Science 7, no.11 (Jul 2006): 11–21.https://doi.org/10.1111/j.1365-2389.1956.tb00857.xG. W. DIMBLEBY PLEISTOCENE ICE WEDGES IN NORTH-EAST YORKSHIRE, Journal of Soil Science 3, no.11 (Jul 2006): 1–19.https://doi.org/10.1111/j.1365-2389.1952.tb00627.x Leland Horberg Intersecting Minor Ridges and Periglacial Features in the Lake Agassiz Basin, North Dakota, The Journal of Geology 59, no.11 (Sep 2015): 1–18.https://doi.org/10.1086/625798Herbert C. Hanson Vegetation and Soil Profiles in some Solifluction and Mound Areas in Alaska, Ecology 31, no.44 (Oct 1950): 606–630.https://doi.org/10.2307/1931578 Leland Horberg A Possible Fossil Ice Wedge in Bureau County, Illinois, The Journal of Geology 57, no.22 (Sep 2015): 132–136.https://doi.org/10.1086/625592 Gerald M. Richmond Stone Nets, Stone Stripes, and Soil Stripes in the Wind River Mountains, Wyoming, The Journal of Geology 57, no.22 (Sep 2015): 143–153.https://doi.org/10.1086/625594Hans Poser Auftautiefe und Frostzerrung im Boden Mitteleuropas w�hrend der W�rm-Eiszeit, Die Naturwissenschaften 34, no.88 (Jan 1947): 232–238.https://doi.org/10.1007/BF01153447Julius Büdel Die morphologischen Wirkungen des Eiszeitklimas im gletscherfreien Gelbiet, Geologische Rundschau 34, no.7-87-8 (Sep 1944): 482–519.https://doi.org/10.1007/BF01803100Albert Steeger Diluviale Bodenfrosterscheinungen am Niederrhein, Geologische Rundschau 34, no.7-87-8 (Sep 1944): 520–538.https://doi.org/10.1007/BF01803101Carl Troll Strukturböden, Solifluktion und Frostklimate der Erde, Geologische Rundschau 34, no.7-87-8 (Sep 1944): 545–694.https://doi.org/10.1007/BF01803103Georg Selzer Diluviale Lößkeile und Lößkeilnetze aus der Umgebung Göttingens, Geologische Rundschau 27, no.33 (Jun 1936): 275–293.https://doi.org/10.1007/BF01804992E. Blanck, F. Giesecke, H. Harrassowitz, H. Jenny, G. Linck, W. Meinardus, H. Mortensen, A. A. J. v. Sigmond, H. Stremme Verteilung der Boden an der Erdoberflache und ihre Ausbildung (regionale oder geographische Bodenlehre), (Jan 1930): 27–521.https://doi.org/10.1007/978-3-642-47386-9_2W. Meinardus, H. Jenny, H. Stremme, H. Harrassowitƶ, E. Blanck, A. A. J. von ’Sigmond, F. Giesecke, H. Mortensen, G. Linck Die Verwitterung in ihrer Abhängigkeit von den äußeren klimatischen Faktoren, (Jan 1930): 1–521.https://doi.org/10.1007/978-3-662-02181-1_1

Referência(s)
Altmetric
PlumX