Artigo Revisado por pares

The emerging role of click reactions in chemical and biological engineering

2012; Wiley; Volume: 58; Issue: 10 Linguagem: Inglês

10.1002/aic.13909

ISSN

1547-5905

Autores

Brian J. Adzima, Christopher N. Bowman,

Tópico(s)

Bacteriophages and microbial interactions

Resumo

AIChE JournalVolume 58, Issue 10 p. 2952-2965 Perspective: 2011 Professional Progress Award for Outstanding Progress in Chemical Engineering The emerging role of click reactions in chemical and biological engineering Brian J. Adzima, Brian J. Adzima Dept. of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309Search for more papers by this authorChristopher N. Bowman, Corresponding Author Christopher N. Bowman [email protected] Dept. of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309Dept. of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309Search for more papers by this author Brian J. Adzima, Brian J. Adzima Dept. of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309Search for more papers by this authorChristopher N. Bowman, Corresponding Author Christopher N. Bowman [email protected] Dept. of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309Dept. of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309Search for more papers by this author First published: 17 August 2012 https://doi.org/10.1002/aic.13909Citations: 26Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Literature Cited 1 Kolb HC, Finn MG, Sharpless KB. Click chemistry: Diverse chemical function from a few good reactions. Angew Chem Int Ed. 2001; 40( 11): 2004–2021. 10.1002/1521-3773(20010601)40:11 3.0.CO;2-5 CASPubMedWeb of Science®Google Scholar 2 Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. A stepwise Huisgen cycloaddition process: Copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. Angew Chem Int Ed. 2002; 41( 14): 2596–2599. 10.1002/1521-3773(20020715)41:14 3.0.CO;2-4 CASPubMedWeb of Science®Google Scholar 3 Tornøe CW, Christensen C, Meldal M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)catalyzed 1,3-Dipolar Cycloadditions of terminal alkynes to azides. J Org Chem. 2002; 67( 9): 3057–3064. 10.1021/jo011148j CASPubMedWeb of Science®Google Scholar 4 Huisgen R. Kinetics and mechanism of 1,3-dipolar cycloadditions. Angew Chem Int Ed. 1963; 2( 11): 633–645. 10.1002/anie.196306331 Google Scholar 5 Huisgen R. 1,3-dipolar cycloadditions. Past and future. Angew Chem Int Ed. 1963; 2( 10): 565–598. 10.1002/anie.196305651 Google Scholar 6 Michael A. Ueber die Einwirkung von Diazobenzolimid auf Acetylendicarbonsäuremethylester. J. Prakt. Chem. 1893; 48( 1): 94–95. 10.1002/prac.18930480114 Google Scholar 7 Diels O, Alder K. Synthesen in der hydroaromatischen reihe. Liebig Ann Chem. 1928; 460: 98. 10.1002/jlac.19284600106 CASWeb of Science®Google Scholar 8 Kharasch MS, Read AT, Mayo FR. The peroxide effect in the addition of reagents to unsaturated compounds. XXVIII. The addition of mercaptans to methyl acrylate. Chem Ind. 1938: 752. CASGoogle Scholar 9 Kharasch MS, Fuchs CF. The peroxide effect in the addition of reagents to unsaturated compounds. XXVIII. The addition of mercaptans to methyl acrylate. J Org Chem. 1948; 13( 1): 97–100. 10.1021/jo01159a012 CASPubMedWeb of Science®Google Scholar 10 Prilezhaeva EN, Shostakovskii MF. The thiylation of olefins. Russ Chem Rev. 1963; 32( 8): 399–426. 10.1070/RC1963v032n08ABEH001351 Web of Science®Google Scholar 11 Mayo FR, Walling C. The peroxide effect in the addition of reagents to unsaturated compounds and in rearrangement reactions. Chem Rev. 1940; 27( 2): 351–412. 10.1021/cr60087a003 CASGoogle Scholar 12 MIL-DTL-83133H. Detail Specification Turbine Fuel, Aviation, Kerosene Type, JP-8(NATO F-34), NATO F-35, and JP-8+100 (NATO F-37)). In: AFPA/PTPT, ed. Wright-Patterson AFB; 2011. Google Scholar 13 Trost BM. The atom economy - a search for synthetic efficiency. Science. 1991; 254( 5037): 1471–1477. 10.1126/science.1962206 CASPubMedWeb of Science®Google Scholar 14 Anastas PT, Kirchhoff MM. Origins, current status, and future challenges of green chemistry. Accounts Chem Res. 2002; 35( 9): 686–694. 10.1021/ar010065m CASPubMedWeb of Science®Google Scholar 15 Sharpless KB. Foward. In: NG Anderson, ed. Practical Process Research & Development. San Diego, CA: Academic Press; 2000. Google Scholar 16 Barner-Kowollik C, Inglis AJ. Has click chemistry lead to a paradigm shift in polymer material design? Macromol Chem Phys. 2009; 210( 12): 987–992. 10.1002/macp.200900139 CASWeb of Science®Google Scholar 17 Zhang L, Chen X, Xue P, Sun HHY, Williams ID, Sharpless KB, Fokin VV, Jia G. Ruthenium-catalyzed cycloaddition of alkynes and organicazides. J Am Chem Soc. 2005; 127( 46): 15998–15999. 10.1021/ja054114s CASPubMedWeb of Science®Google Scholar 18 Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: Synthesis of 5-sulfonyl tetrazoles from azides and sulfonyl cyanides. Angew Chem Int Ed. 2002; 114( 12): 2214–2217. 10.1002/1521-3757(20020617)114:12 3.0.CO;2-E Google Scholar 19 Shi F, Waldo JP, Chen Y, Larock RC. Benzyne click chemistry: synthesis of benzotriazoles from benzynes and azides. Org Lett. 2008; 10( 12): 2409–2412. 10.1021/ol800675u CASPubMedWeb of Science®Google Scholar 20 Agard NJ, Baskin JM, Prescher JA, Lo A, Bertozzi CR. A comparative study of bioorthogonal reactions with azides. ACS Chem Bio. 2006; 1( 10): 644–648. 10.1021/cb6003228 CASPubMedWeb of Science®Google Scholar 21 Baskin JM, Prescher JA, Laughlin ST, Agard NJ, Chang PV, Miller IA, Lo A, Codelli JA, Bertozzit CR. Copper-free click chemistry for dynamic in vivo imaging. Proc Nat Acad Sci USA. 2007; 104( 43): 16793–16797. 10.1073/pnas.0707090104 CASPubMedWeb of Science®Google Scholar 22 DeForest CA, Polizzotti BD, Anseth KS. Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments. Nature Mater. 2009; 8( 8): 659–664. 10.1038/nmat2473 CASPubMedWeb of Science®Google Scholar 23 Gress A, Volkel A, Schlaad H. Thio-click modification of poly [2-(3-butenyl)-2-oxazoline]. Macromolecules. 2007; 40( 22): 7928–7933. 10.1021/ma071357r CASWeb of Science®Google Scholar 24 Hoyle CE, Lowe AB, Bowman CN. Thiol-click chemistry: a multifaceted toolbox for small molecule and polymer synthesis. Chem Soc Rev. 2010; 39( 4): 1355–1387. 10.1039/b901979k CASPubMedWeb of Science®Google Scholar 25 Kade MJ, Burke DJ, Hawker CJ. The power of thiol-ene chemistry. J Polym Sci, Polym Chem. 2010; 48( 4): 743–750. 10.1002/pola.23824 CASWeb of Science®Google Scholar 26 Hoyle CE, Lee TY, Roper T. Thiol-enes: Chemistry of the past with promise for the future. J Polym Sci Pol Chem. 2004; 42( 21): 5301–5338. 10.1002/pola.20366 CASWeb of Science®Google Scholar 27 Lowe AB. Thiol-ene "click" reactions and recent applications in polymer and materials synthesis. Polym Chem. 2010; 1( 1): 17–36. 10.1039/b9py00216b CASWeb of Science®Google Scholar 28 Hoyle CE, Bowman CN. Thiol-ene click chemistry. Angew Chem Int Ed. 2010; 49( 9): 1540–1573. 10.1002/anie.200903924 CASPubMedWeb of Science®Google Scholar 29 Lowe AB, Hoyle CE, Bowman CN. Thiol-yne click chemistry: a powerful and versatile methodology for materials synthesis. J Mater Chem. 2010; 20( 23): 4745–4750. 10.1039/b917102a CASWeb of Science®Google Scholar 30 Adzima BJ, Tao Y, Kloxin CJ, DeForest CA, Anseth KS, Bowman CN. Spatial and temporal control of the alkyne-azide cycloaddition by photoinitiated Cu(II) reduction. Nat Chem. 2011; 3: 258–261. 10.1038/nchem.980 CASPubMedWeb of Science®Google Scholar 31 Tasdelen MA, Yagci Y. Light-induced copper(I)-catalyzed click chemistry. Tetrahedron Lett. 2010; 51( 52): 6945–6947. 10.1016/j.tetlet.2010.10.166 CASWeb of Science®Google Scholar 32 Ritter SC, Konig B. Signal amplification and transduction by photo-activated catalysis. Chem Commun. 2006;( 45): 4694–4696. 10.1039/b610696j CASPubMedWeb of Science®Google Scholar 33 Aimetti AA, Shoemaker RK, Lin CC, Anseth KS. On-resin peptide macrocyclization using thiol-ene click chemistry. Chem Commun. 2012; 46( 23): 4061–4063. 10.1039/c001375g CASWeb of Science®Google Scholar 34 Chan JW, Hoyle CE, Lowe AB, Bowman M. Nucleophile-initiated thiol-michael reactions: Effect of organocatalyst, thiol, and ene. Macromolecules. 2010; 43( 15): 6381–6388. 10.1021/ma101069c CASWeb of Science®Google Scholar 35 DeForest CA, Anseth KS. Photoreversible patterning of biomolecules within click-based hydrogels. Angew Chem Int Ed. 2012; 51( 8): 1816–1819. 10.1002/anie.201106463 CASPubMedWeb of Science®Google Scholar 36 Lutolf MP, Hubbell JA. Synthesis and physicochemical characterization of end-linked poly(ethylene glycol)-co-peptide hydrogels formed by Michael-type addition. Biomacromolecules. 2003; 4( 3): 713–722. 10.1021/bm025744e CASPubMedWeb of Science®Google Scholar 37 Cramer NB, Bowman CN. Kinetics of thiol-ene and thiol-acrylate photopolymerizations with real-time Fourier transform infrared. J Polym Sci Pol Chem. 2001; 39( 19): 3311–3319. 10.1002/pola.1314 CASWeb of Science®Google Scholar 38 Konovalov AI. The reactivity of addends in the diene synthesis reaction. Russ Chem Rev. 1983; 52( 11): 1064–1080. 10.1070/RC1983v052n11ABEH002916 Google Scholar 39 Yates P, Eaton P. Acceleration of the Diels–Alder reaction by aluminum chloride. J Am Chem Soc. 1960; 82( 16): 4436–4437. 10.1021/ja01501a085 CASWeb of Science®Google Scholar 40 Rideout DC, Breslow R. Hydrophobic acceleration of Diels–Alder reactions. J Am Chem Soc. 1980; 102( 26): 7816–7817. 10.1021/ja00546a048 CASGoogle Scholar 41 Breslow R. Hydrophobic effects on simple organic reactions in water. Acc Chem Res. 1991; 24( 6): 159–164. 10.1021/ar00006a001 CASWeb of Science®Google Scholar 42 Fringuelli F, Taticchi A. The Diels–Alder Reaction: Selected Practical Methods. West Sussex, UK: John Wiley & Sons, Ltd.; 2002. Google Scholar 43 Sauer J, Sustmann R. Mechanistic aspects of Diels–Alder reactions - A critical survey. Angew Chem Int Edit Eng. 1980; 19( 10): 779–807. 10.1002/anie.198007791 Web of Science®Google Scholar 44 Lee MW, Herndon WC. Stereochemistry of the furan-maleic anhydride cycloaddition. J Org Chem. 1978; 43( 3): 518–518. 10.1021/jo00397a031 CASWeb of Science®Google Scholar 45 Chen XX, Dam MA, Ono K, Mal A, Shen HB, Nutt SR, Sheran K, Wudl F. A thermally re-mendable cross-linked polymeric material. Science. 2002; 295( 5560): 1698–1702. 10.1126/science.1065879 CASPubMedWeb of Science®Google Scholar 46 Adzima BJ, Kloxin CJ, Bowman CN. Externally triggered healing of a thermoreversible covalent network via self-limited hysteresis heating. Adv Mat. 2010; 22( 25): 2784–2787. 10.1002/adma.200904138 CASPubMedWeb of Science®Google Scholar 47 McElhanon JR, Wheeler DR. Thermally responsive dendrons and dendrimers based on reversible furan-maleimide Diels–Alder adducts. Org Lett. 2001; 3( 17): 2681–2683. 10.1021/ol0101281 CASPubMedWeb of Science®Google Scholar 48 Boul PJ, Reutenauer P, Lehn JM. Reversible Diels–Alder reactions for the generation of dynamic combinatorial libraries. Org Lett. 2005; 7( 1): 15–18. 10.1021/ol048065k CASPubMedWeb of Science®Google Scholar 49 Wiesler U-M, Mullen K. Polyphenylene dendrimers via Diels–Alder reactions: the convergent approach. Chem Commun. 1999;( 22): 2293–2294. 10.1039/a907339f CASWeb of Science®Google Scholar 50 Wei HL, Yang Z, Zheng LM, Shen YM. Thermosensitive hydrogels synthesized by fast Diels–Alder reaction in water. Polymer. 2009; 50( 13): 2836–2840. 10.1016/j.polymer.2009.04.032 CASWeb of Science®Google Scholar 51 Reiner S. A simple model for substituent effects in cycloaddition reactions. II. The Diels–Alder reaction. Tetrahedron Lett. 1971; 12( 29): 2721–2724. 10.1016/S0040-4039(01)96962-X Google Scholar 52 Reiner S. A simple model for substituent effects in cycloaddition reactions. I. 1,3-dipolar cycloadditions. Tetrahedron Lett. 1971; 12( 29): 2717–2720. 10.1016/S0040-4039(01)96961-8 Google Scholar 53 Huisgen R. 1,3-Dipolar cycloadditions. 76. Concerted nature of 1,3-dipolar cycloadditions and the question of diradical intermediates. J Org Chem. 1976; 41( 3): 403–419. 10.1021/jo00865a001 CASWeb of Science®Google Scholar 54 Agard NJ, Prescher JA, Bertozzi CR. A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J Am Chem Soc. 2004; 126( 46): 15046–15047. 10.1021/ja044996f CASPubMedWeb of Science®Google Scholar 55 Ning X, Guo J, Wolfert MA, Boons G-J. Visualizing metabolically labeled glycoconjugates of living cells by copper-free and fast Huisgen cycloadditions. Angew Chem Int Ed. 2008; 47( 12): 2253–2255. 10.1002/anie.200705456 CASPubMedWeb of Science®Google Scholar 56 Orski SV, Poloukhtine AA, Arumugam S, Mao L, Popik VV, Locklin J. High density orthogonal surface immobilization via photoactivated copper-free click chemistry. J Am Chem Soc. 2010; 132( 32): 11024–11026. 10.1021/ja105066t CASPubMedWeb of Science®Google Scholar 57 Huisgen R. Cycloadditions - definition, classification, and characterization. Angew Chem Int Ed. 1968; 7( 5): 321–328. 10.1002/anie.196803211 CASGoogle Scholar 58 Song W, Wang Y, Qu J, Madden MM, Lin Q. A photoinducible 1,3-dipolar cycloaddition reaction for rapid, selective modification of tetrazole-containing proteins. Angew Chem Int Ed. 2008; 47( 15): 2832–2835. 10.1002/anie.200705805 CASPubMedWeb of Science®Google Scholar 59 Gutsmiedl K, Wirges CT, Ehmke V, Carell T. Copper-free click modification of DNA via nitrile oxide norbornene 1,3-dipolar cycloaddition. Org Lett. 2009; 11( 11): 2405–2408. 10.1021/ol9005322 CASPubMedWeb of Science®Google Scholar 60 Harju K, Yli-Kauhaluoma J. Recent advances in 1,3-dipolar cycloaddition reactions on solid supports. Mol Divers. 2005; 9( 1–3): 187–207. 10.1007/s11030-005-1339-1 CASPubMedWeb of Science®Google Scholar 61 van Berkel SS, Dirks AJ, Debets MF, van Delft FL, Cornelissen JJLM, Nolte RJM, Rutjes FPJT. Metal-free triazole formation as a tool for bioconjugation. ChemBioChem. 2007; 8( 13): 1504–1508. 10.1002/cbic.200700278 CASPubMedWeb of Science®Google Scholar 62 Meldal M. Polymer "Clicking" by CuAAC reactions. Macromol Rapid Commun. 2008; 29( 12–13): 1016–1051. 10.1002/marc.200800159 CASWeb of Science®Google Scholar 63 Opsteen JA, van Hest JCM. Modular synthesis of block copolymers via cycloaddition of terminal azide and alkyne functionalized polymers. Chem Comm. 2005;( 1): 57–59. 10.1039/b412930j CASPubMedWeb of Science®Google Scholar 64 Whittaker MR, Urbani CN, Monteiro MJ. Synthesis of 3-miktoarm stars and 1st generation mikto dendritic copolymers by living radical polymerization and click chemistry. J. Am Chem Soc. 2006; 128( 35): 11360–11361. 10.1021/ja0645990 CASPubMedWeb of Science®Google Scholar 65 Himo F, Lovell T, Hilgraf R, Rostovtsev VV, Noodleman L, Sharpless KB, Fokin VV. Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. J Am Chem Soc. 2005; 127( 1): 210–216. 10.1021/ja0471525 CASPubMedWeb of Science®Google Scholar 66 Rodionov VO V, Fokin VV, Finn MG. Mechanism of the ligand-free Cu(1)catalyzed azide-alkyne cycloaddition reaction. Angew Chem Int Ed. 2005; 44( 15): 2210–2215. 10.1002/anie.200461496 CASPubMedWeb of Science®Google Scholar 67 Rodionov VO, Presolski SI, Diaz DD, Fokin VV, Finn MG. Ligand-accelerated Cu-catalyzed azide-alkyne cycloaddition: A mechanistic report. J Am Chem Soc. 2007; 129( 42): 12705–12712. 10.1021/ja072679d CASPubMedWeb of Science®Google Scholar 68 Kuang G-C, Guha PM, Brotherton WS, Simmons JT, Stankee LA, Nguyen BT, Clark RJ, Zhu L. Experimental investigation on the mechanism of chelation-assisted, copper(II) acetate-accelerated azide-alkyne cycloaddition. J Am Chem Soc. 133( 35): 13984–14001. Google Scholar 69 Collman JP, Devaraj NK, Chidsey CED. Clicking functionality onto electrode surfaces. Langmuir. 2004; 20( 4): 1051–1053. 10.1021/la0362977 CASPubMedWeb of Science®Google Scholar 70 Qin A, Lam JWY, Tang BZ. Click polymerization. Chem Soc Rev. 39( 7): 2522–2544. Google Scholar 71 Devaraj NK, Dinolfo PH, Chidsey CED, Collman JP. Selective functionalization of independently addressed microelectrodes by electrochemical activation and deactivation of a coupling catalyst. J Am Chem Soc. 2006; 128( 6): 1794–1795. 10.1021/ja058380h CASPubMedWeb of Science®Google Scholar 72 Jones GO, Houk KN. Predictions of substituent effects in thermal azide 1,3-dipolar cycloadditions: Implications for dynamic combinatorial (reversible) and click (irreversible) chemistry. J Org Chem. 2008; 73( 4): 1333–1342. 10.1021/jo702295d CASPubMedWeb of Science®Google Scholar 73 Barner-Kowollik C, Du Prez FE, Espeel P, Hawker CJ, Junkers T, Schlaad H, Van Camp W. "Clicking" polymers or just efficient linking: What is the difference? Angew Chem Int Ed. 2011; 50( 1): 60–62. 10.1002/anie.201003707 CASPubMedWeb of Science®Google Scholar 74 Antoni P, Robb MJ, Campos L, Montanez M, Hult A, Malmström E, Malkoch M, Hawker CJ. Pushing the limits for thiol-Ene and CuAAC reactions: Synthesis of a 6th generation dendrimer in a single day. Macromolecules. 2010; 43( 16): 6625–6631. 10.1021/ma101242u CASWeb of Science®Google Scholar 75 Altintas O, Vogt AP, Barner-Kowollik C, Tunca U. Constructing star polymers via modular ligation strategies. Polym Chem. 2012; 3( 1): 34–45. 10.1039/c1py00249j CASWeb of Science®Google Scholar 76 Lo Conte M, Robb MJ, Hed Y, Marra A, Malkoch M, Hawker CJ, Dondoni A. Exhaustive glycosylation, PE Gylation, and glutathionylation of a [G4]-ene(48) dendrimer via photoinduced thiol-ene coupling. J. Polym Sci Pol Chem. 2011; 49( 20): 4468–4475. 10.1002/pola.24888 CASPubMedWeb of Science®Google Scholar 77 Hansell CF, Espeel P, Stamenovic MM, Barker IA, Dove AP, Du Prez FE, O'Reilly RK. Additive-free clicking for polymer functionalization and coupling by tetrazine- norbornene chemistry. J Am Chem Soc. 2011; 133( 35): 13828–13831. 10.1021/ja203957h CASPubMedWeb of Science®Google Scholar 78 Spruell JM, Wolffs M, Leibfarth FA, Stahl BC, Heo JH, Connal LA, Hu J, Hawker CJ. Reactive, multifunctional polymer films through thermal cross-linking of orthogonal click groups. J Am Chem Soc. 2011; 133( 41): 16698–16706. 10.1021/ja207635f CASPubMedWeb of Science®Google Scholar 79 Robb MJ, Connal LA, Lee BF, Lynd NA, Hawker CJ. Functional block copolymer nanoparticles: toward the next generation of delivery vehicles. Polym Chem. 2012; 3( 6): 1618–1628. 10.1039/c2py20131c CASPubMedWeb of Science®Google Scholar 80 Fairbanks BD, Scott TF, Kloxin CJ, Anseth KS, Bowman CN. Thiol-Yne Photopolymerizations: Novel mechanism, kinetics, and step-growth formation of highly cross-linked networks. Macromolecules. 2009; 42( 1): 211–217. 10.1021/ma801903w CASPubMedWeb of Science®Google Scholar 81 Allara DL, Parikh AN, Rondelez F. Evidence for a unique chain organization in long chain silane monolayers deposited on two widely different solid substrates. 1995; 11( 7): 2357–2360. Google Scholar 82 Calvert JM, Georger JH, Peckerar MC, Pehrsson PE, Schnur JM, Schoen PE. Deep UV photochemistry and patterning of self-assembled monolayer films. Thin Solid Films. 1992; 210( 1–2): 359–363. 10.1016/0040-6090(92)90257-C Web of Science®Google Scholar 83 Kumar A, Biebuyck HA, Whitesides GM. Patterning self-assembled monolayers - applications in materials science Langmuir. 1994; 10( 5): 1498–1511. 10.1021/la00017a030 CASWeb of Science®Google Scholar 84 Kumar A, Biebuyck HA, Whitesides GM. Patterning self-assembled monolayers - applications in materials science. Langmuir. 1994; 10( 5): 1498–1511. 10.1021/la00017a030 CASWeb of Science®Google Scholar 85 Wilbur JL, Kumar A, Kim E, Whitesides GM. Microfabrication by microcontact printing of self-assembled monolayers. Adv Mater. 1994; 6( 7–8): 600–604. 10.1002/adma.19940060719 CASWeb of Science®Google Scholar 86 Bigelow WC, Pickett DL, Zisman WA. Oleophobic monolayers: I. Films adsorbed from solution in non-polar liquids. J Colloid Sci. 1946; 1( 6): 513–538. 10.1016/0095-8522(46)90059-1 CASWeb of Science®Google Scholar 87 Shafrin EG, Zisman WA. Hydrophobic monolayers adsorbed from aqueous solutions. J Colloid Sci. 1949; 4( 6): 571–590. 10.1016/0095-8522(49)90054-9 CASWeb of Science®Google Scholar 88 Nuzzo RG, Allara DL. Adsorption of bifunctional organic disulfides on gold surfaces. J Am Chem Soc. 1983; 105( 13): 4481–4483. 10.1021/ja00351a063 CASWeb of Science®Google Scholar 89 Du X, Hlady V. Monolayer formation on silicon and mica surfaces rearranged from Nhexadecanoyl-l-alanine supramolecular structures. J Phys Chem B. 2002; 106( 29): 7295–7299. 10.1021/jp0209603 CASPubMedWeb of Science®Google Scholar 90 Bain CD, Troughton EB, Tao YT, Evall J, Whitesides GM, Nuzzo RG. Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. 1989; 111( 1): 321–335. Google Scholar 91 Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev. 2005; 105( 4): 1103–1169. 10.1021/cr0300789 CASPubMedWeb of Science®Google Scholar 92 Maoz R, Sagiv J. On the formation and structure of self-assembling monolayers. 1. A comparative ATR-wetability study of Langmuir-Blodgett and adsorbed films on flat substrates and glass microbeads. J Colloid Interface Sci. 1984; 100( 2): 465–496. 10.1016/0021-9797(84)90452-1 CASWeb of Science®Google Scholar 93 Ulman A. Formation and structure of self-assembled monolayers. 1996; 96( 4): 1533–1554. Google Scholar 94 Barness Y, Gershevitz O, Sekar M, Sukenik CN. Functionalized silanes for the preparation of siloxane-anchored monolayers. Langmuir. 2000; 16( 1): 247–251. 10.1021/la990982p CASWeb of Science®Google Scholar 95 Walba DM, Liberko CA, Korblova E, Farrow M, Furtak TE, Chow BC, Schwartz DK, Freeman AS, Douglas K, Williams SD, Klittnick AF, Clark NA. Self-assembled monolayers for liquid crystal alignment: simple preparation on glass using alkyltrialkoxysilanes. Liq Cryst. 2004; 31( 4): 481–489. 10.1080/02678290410001666075 CASWeb of Science®Google Scholar 96 Roberts C, Chen CS, Mrksich M, Martichonok V, Ingber DE, Whitesides GM. Using mixed self-assembled monolayers presenting RGD and (EG)3OH groups to characterize long-term attachment of bovine capillary endothelial cells to surfaces. J Am Chem Soc. 1998; 120( 26): 6548–6555. 10.1021/ja972467o CASWeb of Science®Google Scholar 97 Kato M, Mrksich M. Using model substrates to study the dependence of focal adhesion formation on the affinity of integrin-ligand complexes. Biochemistry. 2004; 43( 10): 2699–2707. 10.1021/bi0352670 CASPubMedWeb of Science®Google Scholar 98 Hudalla GA, Murphy WL. Using click chemistry to prepare SAM substrates to study stem cell adhesion. Langmuir. 2009; 25( 10): 5737–5746. 10.1021/la804077t CASPubMedWeb of Science®Google Scholar 99 Théry M, Pépin A, Dressaire E, Chen Y, Bornens M. Cell distribution of stress fibres in response to the geometry of the adhesive environment. Cell Motil Cytoskeleton. 2006; 63( 6): 341–355. 10.1002/cm.20126 CASPubMedWeb of Science®Google Scholar 100 Wollman EW, Kang D, Frisbie CD, Lorkovic IM, Wrighton MS. Photosensitive self-assembled monolayers on gold: Photochemistry of surface-confined aryl azide and cyclopentadienylmanganese tricarbonyl. J Am Chem Soc. 1994; 116( 10): 4395–4404. 10.1021/ja00089a030 CASWeb of Science®Google Scholar 101 Frey BL, Corn RM. Covalent attachment and derivatization of poly(l-lysine) monolayers on gold surfaces as characterized by polarization modulation FT-IR spectroscopy. Anal Chem. 1996; 68( 18): 3187–3193. 10.1021/ac9605861 CASWeb of Science®Google Scholar 102 Spinke J, Liley M, Schmitt FJ, Guder HJ, Angermaier L, Knoll W. Molecular recognition at self-assembled monolayers - Optimization of surface functionalization. J Chem Phys. 1993; 99( 9): 7012–7019. 10.1063/1.465447 CASWeb of Science®Google Scholar 103 Abel AP, Weller MG, Duveneck GL, Ehrat M, Widmer HM. Fiber-optic evanescent wave biosensor for the detection of oligonucleotides. 1996; 68( 17): 2905–2912. Google Scholar 104 Canete SJP, Yang W, Lai RY. Folding-based electrochemical DNA sensor fabricated by "click" chemistry. Chem Commun. 2009;( 32): 4835–4837. 10.1039/b911273a CASPubMedWeb of Science®Google Scholar 105 Canete SJP, Zhang Z, Kong L, Schlegel VL, Plantz BA, Dowben PA, Lai RY. Application of synchrotron FTIR microspectroscopy for determination of spatial distribution of methylene blue conjugated onto a SAM via "click" chemistry. Chem Commun. 47( 43): 11918–11920. 10.1039/c1cc13255e CASPubMedWeb of Science®Google Scholar 106 Miura Y, Yamauchi T, Sato H, Fukuda T. The self-assembled monolayer of saccharide via click chemistry: Formation and protein recognition. Thin Solid Films. 2008; 516( 9): 2443–2449. 10.1016/j.tsf.2007.04.061 CASWeb of Science®Google Scholar 107 Marrani AG, Dalchiele EA, Zanoni R, Decker F, Cattaruzza F, Bonifazi D, Prato M. Functionalization of Si(1,0,0) with ferrocene derivatives via click chemistry. Electrochimica Acta. 2008; 53( 11): 3903–3909. 10.1016/j.electacta.2007.10.051 CASWeb of Science®Google Scholar 108 Collman JP, Devaraj NK, Eberspacher TPA, Chidsey CED. Mixed azide-terminated monolayers: A platform for modifying electrode surfaces. Langmuir. 2006; 22( 6): 2457–2464. 10.1021/la052947q CASPubMedWeb of Science®Google Scholar 109 Bexell U, Berger R, Olsson M, Grehk TM, Sundell PE, Johansson M. Bonding of vegetable oils to mercapto silane treated metal surfaces: Surface engineering on the nano scale. Thin Solid Films. 2006; 515( 2): 838–841. 10.1016/j.tsf.2005.12.214 CASWeb of Science®Google Scholar 110 Decreau RA, Collman JP, Hosseini A. Electrochemical applications. How click chemistry brought biomimetic models to the next level: electrocatalysis under controlled rate of electron transfer. Chem Soc Rev. 39( 4): 1291–1301. Google Scholar 111 Yousaf MN, Mrksich M. Diels—Alder reaction for the selective immobilization of protein to electroactive self-assembled monolayers. J Am Chem Soc. 1999; 121( 17): 4286–4287. 10.1021/ja983529t CASWeb of Science®Google Scholar 112 Devadoss A, Chidsey CED. Azide-modified graphitic surfaces for covalent attachment of alkyne-terminated molecules by click chemistry. J Am Chem Soc. 2007; 129( 17): 5370–5371. 10.1021/ja071291f CASPubMedWeb of Science®Google Scholar 113 Chen RT, Muir BW, Such GK, Postma A, McLean KM, Caruso F. Fabrication of asymmetric "Janus" particles via plasma polymerization. Chem Commun. 2010; 46( 28): 5121–5123. 10.1039/c0cc00474j CASPubMedWeb of Science®Google Scholar 114 Chen G, Tao L, Mantovani G, Ladmiral V, Burt DP, Macpherson JV, Haddleton DM. Synthesis of azide/alkyne-terminal polymers and application for surface functionalisation through a [2 + 3] Huisgen cycloaddition process, "click chemistry". 2007; 3( 6): 732–739. Google Scholar 115 Kacprzak KM, Maier NM, Lindner W. Highly efficient immobilization of Cinchona alkaloid derivatives to silica gel via click chemistry. Tetrahedron Lett. 2006; 47( 49): 8721–8726. 10.1016/j.tetlet.2006.10.018 CASWeb of Science®Google Scholar 116 Guo Z, Lei A, Liang X, Xu Q. Click chemistry: a new facile and efficient strategy for preparation of functionalized HPLC packings. Chem Commun. 2006;( 43): 4512–4514. 10.1039/b610733h CASPubMedWeb of Science®Google Scholar 117 Spruell JM, Sheriff BA, Rozkiewicz DI, Dichtel WR, Rohde RD, Reinhoudt DN, Stoddart JF, Heath JR. Heterogeneous catalysis through microcontact printing. Angew Chem Int Edit. 2008; 47( 51): 9927–9932. 10.1002/anie.200803480 CASPubMedWeb of Science®Google Scholar 118 Paxton WF, Spruell JM, Stoddart JF. Heterogeneous catalysis of a copper-coated atomic force microscopy tip for direct-write click chemistry. J Am Chem Soc. 2009; 131( 19): 6692–6694. 10.1021/ja9015974 CASPubMedWeb of Science®Google Scholar 119 Nicolaou KC, Yang Z, Liu JJ, Ueno H, Nantermet PG, Guy RK, Claiborne CF, Renaud J, Couladouros EA, Paulvannan K, Sorensen EJ. Total synthesis of taxol. Nature. 1994; 367( 6464): 630–634. 10.1038/367630a0 CASPubMedWeb of Science®Google Scholar 120 Holton RA, Somoza C, Kim HB, Liang F, Biediger RJ, Boatman PD, Shindo M, Smith CC, Kim S. First total synthesis of taxol. 1. Functionalization of the B ring. J Am Chem Soc. 1994; 116( 4): 1597–1598. 10.1021/ja00083a066 CASWeb of Science®Google Scholar 121 Walji AM, MacMillan DWC. Strategies to bypass the taxol problem. enantioselective cascade catalysis, a new approach for the efficient construction of molecular complexit. SYNLETT. 2007; 10: 1477–1489. Google Scholar 122 Holton RA, Biediger RJ, Boatman PD. In: M Suffness, ed. Taxol: Science and Applications. Boca Raton, FL: CRC; 1995: 97–119. Google Scholar 123 Ajikumar PK, Xiao W-H, Tyo KEJ, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G. Isoprenoid pathway optimization for taxol precursor overproduction in escherichia coli. Science. 330( 6000): 70–74. Google Scholar 124 Kolb HC, Sharpless KB. The growing impact of click chemistry on drug discovery. Drug Discov Today. 2003; 8( 24): 1128–1137. 10.1016/S1359-6446(03)02933-7 CASPubMedWeb of Science®Google Scholar 125 Xie J, Seto CT. A two stage click-based library of protein tyrosine phosphatase inhibitors. Bioorg Med Chem. 2007; 15( 1): 458–473. 10.1016/j.bmc.2006.09.036 CASPubMedWeb of Science®Google Scholar 126 Li J, Zheng M, Tang W, He P-L, Zhu W, Li T, Zuo J-P, Liu H, Jiang H. Syntheses of triazole-modified zanamivir analogues via click chemistry and anti-AIV activities. Bioorg Med Chem Lett. 2006; 16( 19): 5009–5013. 10.1016/j.bmcl.2006.07.047 CASPubMedWeb of Science®Google Scholar 127 Lee LV, Mitchell ML, Huang S-J, Fokin VV, Sharpless KB, Wong C-H. A potent and highly selective inhibitor of human α-1,3-fucosyltransferase via click chemistry. J Am Chem Soc. 2003; 125( 32): 9588–9589. 10.1021/ja0302836 CASPubMedWeb of Science®Google Scholar 128 Brik A, Wu C-Y, Wong C-H. Microtiter plate based chemistry and in situ screening: a useful approach for rapid inhibitor discovery. Org Biomol Chem. 2006; 4( 8): 1446–1457. 10.1039/b600055j PubMedWeb of Science®Google Scholar 129 Lewis WG, Green LG, Grynszpan F, Radić Z, Carlier PR, Taylor P, Finn MG, Sharpless KB. Click chemistry in situ: Acetylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from an array of building blocks. Angew Chem Int Ed. 2002; 114( 6): 1095–1099. 10.1002/1521-3757(20020315)114:6 3.0.CO;2-3 Google Scholar 130 Stephanopoulos N, Francis MB. Choosing an effective protein bioconjugation strategy. Nat Chem Biol. 2011; 7( 12): 876–884. 10.1038/nchembio.720 CASPubMedWeb of Science®Google Scholar 131 Stephanopoulos N, Tong GJ, Hsiao SC, Francis MB. Dual-surface modified virus capsids for targeted delivery of photodynamic agents to cancer cells. ACS Nano. 4( 10): 6014–6020. Google Scholar 132 Stephanopoulos N, Carrico ZM, Francis MB. Nanoscale integration of sensitizing chromophores and porphyrins with bacteriophage MS2. Angew Chem Int Ed. 2009; 48( 50): 9498–9502. 10.1002/anie.200902727 CASPubMedWeb of Science®Google Scholar 133 Wu W, Hsiao SC, Carrico ZM, Francis MB. Genome-free viral capsids as multivalent carriers for taxol delivery. Angew Chem Int Ed. 2009; 48( 50): 9493–9497. 10.1002/anie.200902426 CASPubMedWeb of Science®Google Scholar 134 Garimella PD, Datta A, Romanini DW, Raymond KN, Francis MB. Multivalent, high-relaxivity MRI contrast agents using rigid cysteine-reactive gadolinium complexes. J Am Chem Soc. 2011; 133( 37): 14704–14709. 10.1021/ja204516p CASPubMedWeb of Science®Google Scholar 135 Chalker JM, Bernardes GJL, Lin YA, Davis BG. Chemical modification of proteins at cysteine: Opportunities in chemistry and biology. Chem Asian J. 2009; 4( 5): 630–640. 10.1002/asia.200800427 CASPubMedWeb of Science®Google Scholar 136 Witus LS, Francis MB. Using synthetically modified proteins to make new materials. Acc Chem Res. 2011; 44( 9): 774–783. 10.1021/ar2001292 CASPubMedWeb of Science®Google Scholar 137 Jewett JC, Bertozzi CR. Cu-free click cycloaddition reactions in chemical biology. Chem Soc Rev. 2010; 39( 4): 1272–1279. 10.1039/b901970g CASPubMedWeb of Science®Google Scholar 138 Sletten EM, Bertozzi CR. Bioorthogonal chemistry: Fishing for selectivity in a sea of functionality. Angew Chem Int Ed. 2009; 48( 38): 6974–6998. 10.1002/anie.200900942 CASPubMedWeb of Science®Google Scholar 139 Laughlin ST, Baskin JM, Amacher SL, Bertozzi CR. In vivo imaging of membrane-associated glycans in developing zebrafish. Science 2008; 320( 5876): 664–667. 10.1126/science.1155106 CASPubMedWeb of Science®Google Scholar 140 Hong V, Steinmetz NF, Manchester M, Finn MG. Labeling live cells by copper-catalyzed alkyne-azide click chemistry. Bioconjugate Chem. 2010; 21( 10): 1912–1916. 10.1021/bc100272z CASPubMedWeb of Science®Google Scholar 141 Nulwala HB, Tang CN, Kail BW, Damodaran K, Kaur P, Wickramanayake S, Shi W, Luebke DR. Probing the structure-property relationship of regioisomeric ionic liquids with click chemistry. Green Chem. 2011; 13( 12): 3345–3349. 10.1039/c1gc16067b CASWeb of Science®Google Scholar 142 Takizawa K, Nulwala H, Thibault RJ, Lowenhielm P, Yoshinaga K, Wooley KL, Hawker CJ. Facile syntheses of 4-vinyl-1,2,3-triazole monomers by click azide/acetylene coupling. J Poly Sci A. 2008; 46( 9): 2897–2912. 10.1002/pola.22627 CASWeb of Science®Google Scholar 143 Nulwala H, Takizawa K, Odukale A, Khan A, Thibault RJ, Taft BR, Lipshutz BH, Hawker CJ. Synthesis and characterization of isomeric vinyl-1,2,3-triazole materials by azide-alkyne click chemistry. Macromolecules. 2009; 42( 16): 6068–6074. 10.1021/ma900892h CASWeb of Science®Google Scholar 144 Nulwala H, Burke DJ, Khan A, Serrano A, Hawker CJ. N-Vinyltriazoles: A new functional monomer family through click chemistry. Macromolecules. 2010; 43( 12): 5474–5477. 10.1021/ma100011x CASWeb of Science®Google Scholar 145 Blaszczyk A, Elbing M, Mayor M. Bromine catalyzed conversion of S-tert-butyl groups into versatile and, for self-assembly processes accessible, acetyl-protected thiols. Org Biomol Chem. 2004; 2( 19): 2722–2724. 10.1039/b408677e CASPubMedWeb of Science®Google Scholar 146 Vigderman L, Manna P, Zubarev ER. Quantitative replacement of cetyl trimethylammonium bromide by cationic thiol ligands on the surface of gold nanorods and their extremely large uptake by cancer cells. Angew Chem Int Ed. 2012; 51( 3): 636–641. 10.1002/anie.201107304 CASPubMedWeb of Science®Google Scholar 147 Tewari N, Nizar H, Mane A, George V, Pasad M. Deacetylation of thioacetate using acetyl chloride in methanol. Synth Commun. 2006; 36: 1911–1914. 10.1080/00397910600602735 CASWeb of Science®Google Scholar 148 Han C-C, Balakumar R. Mild and efficient methods for the conversion of benzylic bromides to benzylic thiols. Tetrahedron Lett. 2006; 47( 47): 8255–8258. 10.1016/j.tetlet.2006.09.093 CASWeb of Science®Google Scholar 149 Kenneth Y. A simple method for in situ generation of thiols from thioacetates. Tetrahedron Lett. 1999; 40: 1101–1102. 10.1016/S0040-4039(98)02591-X Web of Science®Google Scholar Citing Literature Volume58, Issue10October 2012Pages 2952-2965 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX