Discrepancy between factors affecting nestling growth and survival and maternal success in Common Grackles
2012; Association of Field Ornithologists; Volume: 83; Issue: 1 Linguagem: Inglês
10.1111/j.1557-9263.2011.00351.x
ISSN1557-9263
AutoresJ. Dylan Maddox, Patrick J. Weatherhead,
Tópico(s)Fish Ecology and Management Studies
ResumoJournal of Field OrnithologyVolume 83, Issue 1 p. 17-25 Discrepancy between factors affecting nestling growth and survival and maternal success in Common Grackles Discrepancias entre factores que afectan el crecimiento de pichones y su sobrevivencia y el éxito maternal en Quiscalus quiscula J. Dylan Maddox, Corresponding Author J. Dylan Maddox Program in Ecology, Evolution, and Conservation Biology, University of Illinois, Champaign, Illinois 61820, USA Current address: Florida Museum of Natural History, Gainesville, FL 32611, USA Corresponding author. Email: [email protected]Search for more papers by this authorPatrick J. Weatherhead, Patrick J. Weatherhead Program in Ecology, Evolution, and Conservation Biology, University of Illinois, Champaign, Illinois 61820, USASearch for more papers by this author J. Dylan Maddox, Corresponding Author J. Dylan Maddox Program in Ecology, Evolution, and Conservation Biology, University of Illinois, Champaign, Illinois 61820, USA Current address: Florida Museum of Natural History, Gainesville, FL 32611, USA Corresponding author. Email: [email protected]Search for more papers by this authorPatrick J. Weatherhead, Patrick J. Weatherhead Program in Ecology, Evolution, and Conservation Biology, University of Illinois, Champaign, Illinois 61820, USASearch for more papers by this author First published: 27 February 2012 https://doi.org/10.1111/j.1557-9263.2011.00351.xCitations: 3 Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstracten ABSTRACT Multiple factors potentially affect nestling survival and maternal reproductive success. However, little is known about the relative importance of different factors when operating simultaneously or whether the same factors are important for nestlings and their mothers. We determined the effect of hatching asynchrony, individual egg size, mean egg size, nestling sex, and clutch initiation date on the survival of individual nestlings and on maternal reproductive success in Common Grackles (Quiscalus quiscula) from 2004 to 2006 in central Illinois. Factors most important to maternal success differed from those important for individual nestling growth and survival. Hatching asynchrony had the greatest within-nest influence on the fate of nestlings; the earlier a nestling hatched relative to siblings, the greater its mass and likelihood of fledging. Clutch size had the greatest influence on maternal reproductive success, with females with larger clutches fledging more young. Thus, both nestling survival and maternal success were largely determined by a single, albeit different, factor. A possible explanation for the apparent unimportance of most factors we measured in determining maternal success is that we did not consider variation among females. Individual variation in maternal attributes such as condition, size, age, experience, or mate quality may result in females tailoring clutch attributes (i.e., egg size, sex, and degree of hatching asynchrony) in ways that allow them to maximize their reproductive success. The discordance between factors that benefited mothers versus their offspring illustrates the importance of considering the maternal consequences of any factor that appears to affect offspring survival. Factors that increase the mass and survival of some offspring may not result in increased maternal reproductive success. RESUMENes Potencialmente, muchos factores afectan la sobrevivencia de los pichones y el éxito reproductivo maternal. Sin embargo, se sabe poco sobre la importancia relativa de diferentes factores que operan simultáneamente o si algunos factores, en particular, son importantes para los pichones y sus madres. Determinamos el efecto del eclosionamiento asincrónico, tamaño de los huevos, tamaño promedio de los huevos, sexo del pichón e iniciación de la camada en la sobrevivencia individual de pichones y en el éxito reproductivo de las hembras de Quiscalus quiscula, en trabajo que se llevó a cabo en la parte central de Illinois de 2004 al 2006. Los factores mayor importancia para el éxito de las madres difirieron de los factores más importantes para el crecimiento y sobrevivencia de pichones particulares. La asincronía en el eclosionamiento tuvo la mayor influencia en el destino del pichón; entre más temprano nace el pichón, en relación a sus hermanos, mayor su masa corporal y probabilidad de volar. El tamaño de la camada tuvo el mayor impacto en el éxito reproductivo de las madres, produciendo más volantones aquellas madres con camadas de mayor tamaño. Por tanto, ambos, la sobrevivencia de los pichones y el éxito maternal fueron mayormente determinados por un solo factor, pero diferente. Una posible explicación para la aparente poca importancia de muchos otros factores, que medimos para determinar el éxito maternal, es que no consideramos variaciónes entre hembras. La variación individual en atributos maternos tales como su condición, tamaño, edad, experiencia o calidad de su pareja pudieran permitir que la hembra atempere particularidades de la camada (ej. tamaño del huevo, sexo, y grado de asincronía en el eclosionamiento), que a su efecto le permita maximizar su éxito reproductivo. La discordancia entre factores que benefician a la madre versus sus hijos ilustra la importancia de considerar las consecuencias maternales de cualquier factor que parezca afectar la sobrevivencia de los pichones. Factores que incrementan la masa corporal y sobrevivencia de los pichones, no necesariamente resultan en un incremento en el éxito maternal. LITERATURE CITED Badyaev, A. V., T. L. HAmstra, K. P. Oh, and D. A. A. Seaman. 2006. Sex-biased maternal effects reduce ectoparasite-induced mortality in a passerine bird. Proceedings of the National Academy of Sciences USA 103: 14406–14411. 10.1073/pnas.0602452103 CASPubMedWeb of Science®Google Scholar Badyaev, A. V., T. L. HAmstra, K. P. Oh, and D. A. A. Seaman, G. E. Hill, M. L. Beck, A. A. Dervan, R. A. Duckworth, K. J. Mcgraw, P. M. Nolan and L. A. Whittingham. 2002. Sex-biased hatching order and adaptive population divergence in a passerine bird. Science 295: 316–318. 10.1126/science.1066651 CASPubMedWeb of Science®Google Scholar Baayen, R. H., D. J. Davidson, and D. M. Bates. 2008. Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language 59: 390–412. 10.1016/j.jml.2007.12.005 Web of Science®Google Scholar Bernardo, J. 1996. Maternal effects in animal ecology. American Zoologist 36: 83–105. 10.1093/icb/36.2.83 Web of Science®Google Scholar Bolker, B. M., M. E. Brooks, C. J. Clark, S. W. Geange, J. R. Poulsen, M. H. H. Stevens, and J. S. S. White. 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology and Evolution 24: 127–135. 10.1016/j.tree.2008.10.008 PubMedWeb of Science®Google Scholar Boyce, M. S., and C. M. Perrins. 1987. Optimizing Great Tit clutch size in a fluctuating environment. Ecology 68: 142–153. 10.2307/1938814 Web of Science®Google Scholar Ritton, P. P., R. D. Dawson, and E. L. O'Brien. 2006. Influence of intraclutch egg-mass variation and hatching asynchrony on relative offspring performance within broods of an altricial bird. Canadian Journal of Zoology 84: 1721–1726. 10.1139/z06-179 Web of Science®Google Scholar Budden, A. E., and S. R. Beissinger. 2005. Egg mass in an asynchronously hatching parrot: does variation offset constraints imposed by laying order? Oecologia 144: 318–326. 10.1007/s00442-005-0054-z PubMedWeb of Science®Google Scholar Clark, A. B., and D. S. Wilson. 1981. Avian breeding adaptations: hatching asynchrony, brood reduction, and nest failure. Quarterly Review of Biology 56: 253–277. 10.1086/412316 Web of Science®Google Scholar Drent, R. H., and S. Daan. 1980. The prudent parent: energetic adjustments in avian breeding. Ardea 68: 225–252. Web of Science®Google Scholar Duckworth, R. A. 2009. Maternal effects and range expansion: a key factor in a dynamic process? Philosophical Transactions of the Royal Society B 364: 1075–1086. 10.1098/rstb.2008.0294 Web of Science®Google Scholar Etches, R. J., A. Gargbutt, and A. L. Middleton. 1979. Plasma concentrations of prolactin during egg laying and incubation in the Ruffed Grouse (Bonasa umbellus). Canadian Journal of Zoology 57: 1624–1627. 10.1139/z79-213 CASWeb of Science®Google Scholar Fiala, K. L. 1980. On estimating the primary sex-ratio from incomplete data. American Naturalist 115: 442–444. 10.1086/283571 Web of Science®Google Scholar Fiala, K. L., and J. D. Congdon. 1983. Energetic consequences of sexual size dimorphism in nestling Red-winged Blackbirds. Ecology 64: 642–647. 10.2307/1937183 Web of Science®Google Scholar Gibbs, H. L. 1988. Heritability and selection on clutch size in Darwin's Medium Ground Finches (Geospiza fortis). Evolution 42: 750–762. 10.1111/j.1558-5646.1988.tb02493.x PubMedWeb of Science®Google Scholar Godfray, H. C. 1995. Evolutionary theory of parent-offspring conflict. Nature 376: 133–138. 10.1038/376133a0 CASPubMedWeb of Science®Google Scholar Graham, M. H. 2003. Confronting multicollinearity in ecological multiple regression. Ecology 84: 2809–2815. 10.1890/02-3114 Web of Science®Google Scholar Howe, H. F. 1976. Egg size, hatching asynchrony, sex, and brood reduction in the Common Grackle. Ecology 57: 1195–1207. 10.2307/1935044 Web of Science®Google Scholar Howe, H. F. 1978. Initial investment, clutch size, and brood reduction in the Common Grackle (Quiscalus quiscula L.). Ecology 59: 1109–1122. 10.2307/1938226 Web of Science®Google Scholar Komdeur, J., S. Daan, J. Tinbergen, and C. Mateman. 1997. Extreme adaptive modification in sex ratio of the Seychelles Warbler's eggs. Nature 385: 522–525. 10.1038/385522a0 CASPubMedWeb of Science®Google Scholar Krackow, S., and M. Neuhauser. 2008. Insights from complete-incomplete brood sex-ratio disparity. Behavioral Ecology and Sociobiology 62: 469–477. 10.1007/s00265-007-0466-3 Web of Science®Google Scholar Krackow, S., and M. Neuhauser, and E. Tkadlec. 2001. Analysis of brood sex ratios: implications of offspring clustering. Behavioral Ecology and Sociobiology 50: 293–301. 10.1007/s002650100366 Web of Science®Google Scholar Krist, M. 2011. Egg size and offspring quality: a meta-analysis in birds. Biological Reviews 86: 692–716. 10.1111/j.1469-185X.2010.00166.x PubMedWeb of Science®Google Scholar Krist, M. and V. Remes. 2004. Maternal effects and offspring performance: in search of the best method. Oikos 106: 422–426. 10.1111/j.0030-1299.2004.13373.x Web of Science®Google Scholar V. Remes, V. Remes, L. Uvirova, P. Nadvornik, and S. Bures. 2004. Egg size and offspring performance in the Collared Flycatcher (Ficedula albicollis): a within-clutch approach. Oecologia 140: 52–60. 10.1007/s00442-004-1568-5 PubMedWeb of Science®Google Scholar Lack, D. 1947. The significance of clutch size. Ibis 89: 302–352. 10.1111/j.1474-919X.1947.tb04155.x Web of Science®Google Scholar Lack, D.. 1954. The natural regulation of animal numbers. Oxford University Press, Oxford, UK . Google Scholar Lack, D.. 1966. Population studies of birds. Oxford University Press, Oxford, UK . Web of Science®Google Scholar Maddox, J. D., and P. J. Weatherhead. 2006. Nests without eggs: abandonment or cryptic predation? Auk 123: 135–140. 10.1642/0004-8038(2006)123[0135:NWEAOC]2.0.CO;2 Web of Science®Google Scholar Maddox, J. D., and P. J. Weatherhead, and Maddox, J. D., and P. J. Weatherhead. 2008. Egg size variation in birds with asynchronous hatching: is bigger really better? American Naturalist 171: 358–365. 10.1086/527500 PubMedWeb of Science®Google Scholar Maddox, J. D., and P. J. Weatherhead and Maddox, J. D., and P. J. Weatherhead. 2009. Seasonal sex allocation by Common Grackles? Revisiting a foundational study. Ecology 90: 3190–3196. 10.1890/08-2180.1 PubMedWeb of Science®Google Scholar Magrath, R. D. 1990. Hatching asynchrony in altricial birds. Biological Review 65: 587–622. 10.1111/j.1469-185X.1990.tb01239.x Web of Science®Google Scholar Marshall, D. J., R. M. Allen, and A. J. Crean. 2008. The ecological and evolutionary importance of maternal effects in the sea. Oceanography and Marine Biology: An Annual Review 46: 203–250. 10.1201/9781420065756.ch5 Web of Science®Google Scholar Marshall, D. J., R. M. Allen, and A. J. Crean, and T. Uller. 2007. When is a maternal effect adaptive? Oikos 116: 1957–1963. 10.1111/j.2007.0030-1299.16203.x Web of Science®Google Scholar Mead, P. S., and M. L. Morton. 1985. Hatching asynchrony in the Mountain White-crowned Sparrow (Zonotrichia leucophrys oriantha): a selected or incidental trait? Auk 102: 781–792. Web of Science®Google Scholar Nager, R. G., P. Monaghan, R. Griffiths, D. C. Houston, and R. Dawson. 1999. Experimental demonstration that offspring sex ratio varies with maternal condition. Proceedings of the National Academy of Sciences USA 96: 570–573. 10.1073/pnas.96.2.570 CASPubMedWeb of Science®Google Scholar Nicolaus, M., S. P. M. Michler, R. Ubels, M. Van Der Velde, J. Komdeur, C. Both, and J. M. Tinbergen. 2009. Sex-specific effects of altered competition on nestling growth and survival: an experimental manipulation of brood size and sex ratio. Journal of Animal Ecology 78: 414–426. 10.1111/j.1365-2656.2008.01505.x PubMedWeb of Science®Google Scholar Parker, G. A., N. J. Royle, and I. R. Hartley. 2002. Intrafamilial conflict and parental investment: a synthesis. Philosophical Transactions of the Royal Society B 357: 295–307. 10.1098/rstb.2001.0950 Web of Science®Google Scholar Peer, B. D., and E. K. Bollinger. 1997. Common Grackle (Quiscalus quiscula). In: The birds of North America, No. 271 ( A. Poole, and F. Gill, eds.), pp. 1–20. The Academy of Natural Sciences, Philadelphia , PA , and The American Ornithologists' Union, Washington , D.C . Google Scholar Perrins, C. M. 1970. The timing of birds' breeding seasons. Ibis 112: 242–255. 10.1111/j.1474-919X.1970.tb00096.x Web of Science®Google Scholar Pettifor, R. A., C. M. Perrins, and R. H. Mccleery. 1988. Individual optimization of clutch size in Great Tits. Nature 336: 160–162. 10.1038/336160a0 Web of Science®Google Scholar Price, T. 1998. Maternal and paternal effects in birds: effects on offspring fitness. In: Maternal effects as adaptations ( T. A. Mousseau, and C. W. Fox, eds.), pp. 202–226. Oxford University Press, Oxford , UK . Web of Science®Google Scholar R Development Core Team. online 2010. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna , Austria . (15 August 2010). Google Scholar Ricklefs, R. E. 1993. Sibling competition, hatching asynchrony, incubation period, and lifespan in altricial birds. Current Ornithology 11: 199–276. 10.1007/978-1-4757-9912-5_5 Google Scholar Rockwell, R. F., C. S. Findlay, and F. Cooke. 1987. Is there an optimal clutch size in Snow Geese? American Naturalist 130: 839–863. 10.1086/284751 Web of Science®Google Scholar Slagsvold, T., J. Sandvik, G. Rofstad, O. Lorentsen, and M. Husby. 1984. On the adaptive value of intraclutch egg-size variation in birds. Auk 101: 685–697. 10.2307/4086895 Web of Science®Google Scholar Stoleson, S. H., and S. R. Beissinger. 1995. Hatching asynchrony and the onset of incubation in birds, revisited: when is the critical period? Current Ornithology 12: 191–270. 10.1007/978-1-4615-1835-8_6 Google Scholar Teather, K. L. 1987. Intersexual differences in food consumption by hand-reared Great-tailed Grackle (Quiscalus mexicanus) nestlings. Auk 104: 635–639. Web of Science®Google Scholar Teather, K. L.. 1992. An experimental-study of competition for food between male and female nestlings of the Red-winged Blackbird. Behavioral Ecology and Sociobiology 31: 81–87. 10.1007/BF00166340 Web of Science®Google Scholar Teather, K. L., and P. J. Weatherhead. 1988. Sex-specific energy requirements of Great-tailed Grackle (Quiscalus mexicanus) nestlings. Journal of Animal Ecology 57: 659–668. 10.2307/4931 Web of Science®Google Scholar P. J. Weatherhead and P. J. Weatherhead. 1989. Sex-specific mortality in nestling Great-tailed Grackles. Ecology 70: 1485–1493. 10.2307/1938207 Web of Science®Google Scholar Tivers, R. L., and D. E. Willard. 1973. Natural selection of parental ability to vary the sex ratio of offspring. Science 179: 90–92. Google Scholar Tivers, R. L., and D. E. Willard. 1974. Parent-offspring conflict. American Zoologist 14: 249–264. Google Scholar Venables, W. N., and B. D. Ripley. 2002. Modern applied statistics with S. Springer, New York , NY . Google Scholar Vleck, C. M. 2002. Hormonal control of incubation behaviour. In: Avian incubation: behaviour, environment, and evolution. ( D. C. Deeming, ed.), pp. 54–62. Oxford University Press, Oxford , UK . Google Scholar Wade, M. J. 1998. The evolutionary genetics of maternal effects. In: Maternal effects as adaptations ( T. A. Mousseau and C. W. Fox, eds.), pp. 5–21. Oxford University Press, Oxford , UK . Web of Science®Google Scholar Weatherhead, P. J., and K. L. Teather. 1991. Are skewed fledgling sex ratios in sexually dimorphic birds adaptive? American Naturalist 138: 1159–1172. 10.1086/285275 Web of Science®Google Scholar Williams, T. D. 1994. Intraspecific variation in egg size and egg composition in birds: effects on offspring fitness. Biological Reviews 69: 35–59. 10.1111/j.1469-185X.1994.tb01485.x CASPubMedWeb of Science®Google Scholar Wilson, K., and I. C. W. Hardy. 2002. Statistical analysis of sex ratios: an introduction. In: Sex ratios: concepts and research methods ( I. C. W. Hardy, ed.), pp. 48–92. Cambridge University Press, Cambridge , UK . 10.1017/CBO9780511542053.004 Google Scholar Citing Literature Volume83, Issue1February 2012Pages 17-25 ReferencesRelatedInformation
Referência(s)