Validating growth and development of a seabird as an indicator of food availability: captive-reared Caspian Tern chicks fed ad libitum and restricted diets
2011; Association of Field Ornithologists; Volume: 82; Issue: 1 Linguagem: Inglês
10.1111/j.1557-9263.2010.00311.x
ISSN1557-9263
AutoresDonald E. Lyons, Daniel D. Roby,
Tópico(s)Animal Behavior and Reproduction
ResumoJournal of Field OrnithologyVolume 82, Issue 1 p. 88-100 Validating growth and development of a seabird as an indicator of food availability: captive-reared Caspian Tern chicks fed ad libitum and restricted diets La validación del crecimiento y desarrollo de un ave marina como un indicador de la disponibilidad de comida: pichones de Hydrogprogne caspia criados en cautiverio y alimentados ad libitum y dietas restringidas Donald E. Lyons, Corresponding Author Donald E. Lyons U.S. Geological Survey—Oregon Cooperative Fish and Wildlife Research Unit, Oregon State University, 104 Nash Hall, Corvallis, Oregon 97331, USA Corresponding author. Email: [email protected]Search for more papers by this authorDaniel D. Roby, Daniel D. Roby U.S. Geological Survey—Oregon Cooperative Fish and Wildlife Research Unit, Oregon State University, 104 Nash Hall, Corvallis, Oregon 97331, USASearch for more papers by this author Donald E. Lyons, Corresponding Author Donald E. Lyons U.S. Geological Survey—Oregon Cooperative Fish and Wildlife Research Unit, Oregon State University, 104 Nash Hall, Corvallis, Oregon 97331, USA Corresponding author. Email: [email protected]Search for more papers by this authorDaniel D. Roby, Daniel D. Roby U.S. Geological Survey—Oregon Cooperative Fish and Wildlife Research Unit, Oregon State University, 104 Nash Hall, Corvallis, Oregon 97331, USASearch for more papers by this author First published: 23 February 2011 https://doi.org/10.1111/j.1557-9263.2010.00311.xCitations: 23Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstracten ABSTRACT For seabirds raising young under conditions of limited food availability, reducing chick provisioning and chick growth rates are the primary means available to avoid abandonment of a breeding effort. For most seabirds, however, baseline data characterizing chick growth and development under known feeding conditions are unavailable, so it is difficult to evaluate chick nutritional status as it relates to foraging conditions near breeding colonies. To address this need, we examined the growth and development of young Caspian Terns (Hydroprogne caspia), a cosmopolitan, generalist piscivore, reared in captivity and fed ad libitum and restricted (ca. one-third lower caloric intake) diets. Ad libitum-fed chicks grew at similar rates and achieved a similar size at fledging as previously documented for chicks in the wild and had energetic demands that closely matched allometric predictions. We identified three general characteristics of food-restricted Caspian Tern chicks compared to ad libitum chicks: (1) lower age-specific body mass, (2) lower age-specific skeletal and feather size, such as wing chord length, and (3) heightened levels of corticosterone in blood, both for baseline levels and in response to acute stress. Effects of diet restriction on feather growth (10–11% slower growth in diet-restricted chicks) were less pronounced than effects on structural growth (37–52% slower growth) and body mass (24% lower at fledging age), apparently due to preferential allocation of food resources to maintain plumage growth. Our results suggest that measurements of chick body mass and feather development (e.g., wing chord or primary length) or measurement of corticosterone levels in the blood would allow useful evaluation of the nutritional status of chicks reared in the wild and of food availability in the foraging range of adults. Such evaluations could also inform demography studies (e.g., predict future recruitment) and assist in evaluating designated piscivorous waterbird conservation (colony) sites. RESUMENes Para aves marinas que crían pichones bajo condiciones de disponibilidad de comida limitada, reducir el aprovisionamiento a los pichones y las tasas de crecimiento de los pichones son la manera principal de evitar de abandonar un intento de reproducir. Sin embargo, para la mayoría de las aves marinas, los valores de referencia que caracterizan el crecimiento y desarrollo de pichones bajo condiciones conocidas de alimentación no están disponibles. Entonces, es difícil evaluar el estatus nutricional de los pichones en relación a las condiciones de forrajeo cerca de colonias de nidificacion. Para responder a esta necesidad, examinamos el crecimiento y desarrollo de pichones de Hydroprogne caspia, un piscívoro cosmopolita y generalista, cuales fueron criados en cautiverio y alimentados con dietas ad libitum y con dietas restringidas (con aproximadamente un tercio menos de las calorías). Los pichones dados a comer ad libitum tuvieron tasas de crecimiento similares y llegaron a un tamaño similar a pichones silvestres en la etapa de emplumamiento. También tenían una demanda energética que era muy similar a lo de predicciones alométricas. Identificamos tres características generales de pichones de H. caspia con dietas restringidas en comparación a pichones con dietas ad libitum: (1) un peso corporal más bajo específico a cada edad, (2) un tamaño del esqueleto y de plumaje más bajo por edad, como por ejemplo el largo del ala, y (3) niveles altos de corticosterona en la sangre, tanto para niveles de valores de referencia y en respuesta al estrés aguda. Los efectos de la restricción de la dieta al crecimiento de las plumas (crecimiento de 10–11% más lento en pichones con dieta restringida) fueron menos pronunciados que los efectos sobre el crecimiento estructural (crecimiento de 37–52% más lento) y peso corporal (24% más bajo a la edad de emplumamiento), aparentemente por alocar preferencialmente los recursos alimenticios para mantener el crecimiento del plumaje. Nuestros resultados sugieren que las medidas del peso corporal de pichones y el desarrollo del plumaje (ej., largo del ala o de las primarias) o las medidas de niveles de corticosterona en la sangre nos permitiría una evaluación útil del estatus nutricional de pichones silvestres y de la disponibilidad de comida en el área de forrajeo de los adultos. Estos tipos de evaluaciones también nos podrían proveer información para estudios demográficos (ej., el predecir la incorporacion futura de volantones) y asistir en la evaluación de áreas para la conservación de aves acuáticas piscívoras. LITERATURE CITED Barlow, M. L., and J. E. Dowding. 2002. Breeding biology of Caspian Terns (Sterna caspia) at a colony near Invercargill, New Zealand. Notornis 49: 76–90. Google Scholar Benowitz-Fredericks, Z. M., A. S. Kitaysky, and C. W. Thompson. 2006. Growth and allocation in captive Common Murre (Uria aalge) chicks. Auk 123: 722–734. 10.1642/0004-8038(2006)123[722:GAAICC]2.0.CO;2 Web of Science®Google Scholar Benowitz-Fredericks, Z. M., M. T. Shultz, and A. S. Kitaysky. 2008. Stress hormones suggest opposite trends of food availability for planktivorous and piscivorous seabirds in 2 years. Deep-Sea Research II 55: 1868–1876. 10.1016/j.dsr2.2008.04.007 Web of Science®Google Scholar Blount, J.D., N. B. Metcalfe, K. Arnold, P. F. Surai, and P. Monaghan. 2006. Effects of neonatal nutrition on adult reproduction in a passerine bird. Ibis 148: 509–514. 10.1111/j.1474-919X.2006.00554.x Web of Science®Google Scholar Both, C., M. E. Visser, and N. Verboven. 1999. Density-dependent recruitment rates in Great Tits: the importance of being heavier. Proceedings of the Royal Society of London B 266: 465–469. 10.1098/rspb.1999.0660 Web of Science®Google Scholar Cairns, D. K. 1987. Seabirds as indicators of marine food supplies. Biological Oceanography 5: 261–271. Google Scholar Collis, K., D. D. Roby, D. P. Craig, S. Adamany, J. Y. Adkins, and D. E. Lyons. 2002. Population size and diet composition of fish-eating colonial waterbirds on the lower Columbia River: implications for losses of juvenile salmonids to avian predation. Transactions of the American Fisheries Society 131: 537–550. 10.1577/1548-8659(2002)131 2.0.CO;2 Web of Science®Google Scholar Cuthbert, F. J., and L. R. Wires. 1999. Caspian Tern (Sterna caspia). In: The birds of North America, no. 403 ( A. Poole and F. Gill, eds.). The Academy of Natural Sciences, Philadelphia , PA , and the American Ornithologists’ Union, Washington , DC . Google Scholar Dahdul, W. M., and M. H. Horn. 2003. Energy allocation and postnatal growth in captive Elegant Tern (Sterna elegans) chicks: responses to high- versus low-energy diets. Auk 120: 1069–1081. 10.1642/0004-8038(2003)120[1069:EAAPGI]2.0.CO;2 Web of Science®Google Scholar Devney, C. A., M. J. Caley, and B. C. Congdon. 2010. Plasticity of noddy parents and offspring to sea-surface temperature anomalies. PLoS ONE 5: e11891. 10.1371/journal.pone.0011891 CASPubMedWeb of Science®Google Scholar Einoder, L. D. 2009. A review of the use of seabirds as indicators in fisheries and ecosystem management. Fisheries Research 95: 6–13. 10.1016/j.fishres.2008.09.024 Web of Science®Google Scholar Gaston, A. J. 1997. Mass and date at departure affect the survival of Ancient Murrelet Synthliboramphus antiquus chicks after leaving the colony. Ibis 139: 673–678. 10.1111/j.1474-919X.1997.tb04690.x Web of Science®Google Scholar Gill, F. B. 1995. Ornithology. W. H. Freeman, New York , NY . Google Scholar Harding, A. M. A., J. F. Piatt, and K. C. Hamer. 2003. Breeding ecology of Horned Puffins (Fratercula corniculata) in Alaska: annual variation and effects of El Niño. Canadian Journal of Zoology 81: 1004–1013. 10.1139/z03-075 Web of Science®Google Scholar IPCC (Intergovernmental Panel on Climate Change). 2007. Summary for policymakers: contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change, Geneva , Switzerland . Google Scholar Kitaysky, A. S., E. V. Kitaiskaia, J. F. Piatt, and J. C. Wingfield. 2003. Benefits and costs of increased levels of corticosterone in seabird chicks. Hormones and Behavior 43: 140–149. 10.1016/S0018-506X(02)00030-2 CASPubMedWeb of Science®Google Scholar Kitaysky, A. S., E. V. Kitaiskaia, J. C. Wingfield, and J. F. Piatt. 2001. Dietary restriction causes chronic elevation of corticosterone and enhances stress response in Red-legged Kittiwake chicks. Journal of Comparative Physiology B 171: 701–709. 10.1007/s003600100230 CASPubMedWeb of Science®Google Scholar Kitaysky, A. S., J. F. Piatt, and J. C. Wingfield. 2007. Stress hormones link food availability and population processes in seabirds. Marine Ecology Progress Series 352: 245–258. 10.3354/meps07074 Web of Science®Google Scholar Kitaysky, A. S., J. F. Piatt, and M. D. Romano. 1999. The adrenocortical stress-response of Black-legged Kittiwake chicks in relation to dietary restrictions. Journal of Comparative Physiology B 169: 303–310. 10.1007/s003600050225 CASWeb of Science®Google Scholar Kitaysky, A. S., M. D. Romano, J. F. Piatt, J. C. Wingfield, and M. Kikuchi. 2005. The adrenocortical response of Tufted Puffin chicks to nutritional deficits. Hormones and Behavior 47: 606–619. 10.1016/j.yhbeh.2005.01.005 CASPubMedWeb of Science®Google Scholar Klaassen, M., C. Bech, D. Masman, and G. Slagsvold. 1989. Growth and energetics of Arctic Tern chicks (Sterna paradisaea). Auk 106: 240–248. Web of Science®Google Scholar Kress, S. W. 1983. The use of decoys, sound recordings, and gull control for re-establishing a tern colony in Maine. Colonial Waterbirds 6: 185–196. 10.2307/1520987 Google Scholar Lack, D. L. 1968. Ecological adaptations for breeding in birds. Methuen, London , UK . Google Scholar Lindstrom, J. 1999. Early development and fitness in birds and mammals. Trends in Ecology and Evolution 14: 343–348. 10.1016/S0169-5347(99)01639-0 CASPubMedWeb of Science®Google Scholar Magrath, R. D. 1991. Nestling weight and juvenile survival in the blackbird, Turdus merula. Journal of Animal Ecology 60: 335–351. 10.2307/5464 Web of Science®Google Scholar Mauco, L., and M. Favero. 2005. The food and feeding biology of Common Terns wintering in Argentina: influence of environmental conditions. Waterbirds 28: 450–457. 10.1675/1524-4695(2005)28[450:TFAFBO]2.0.CO;2 Web of Science®Google Scholar Metcalfe, N. B., and P. Monaghan. 2001. Compensation for a bad start: grow now, pay later? Trends in Ecology and Evolution 16: 254–260. 10.1016/S0169-5347(01)02124-3 PubMedWeb of Science®Google Scholar Moe, B., S. Brunvoll, D. Mork, T. E. Brobakk, and C. Bech. 2004. Developmental plasticity of physiology and morphology in diet-restricted European Shag nestlings (Phalacrocorax aristotelis). Journal of Experimental Biology 207: 7067–4076. 10.1242/jeb.01226 Web of Science®Google Scholar Montevecchi, W. A., R. E. Ricklefs, I. R. Kirkham, and D. Gabaldon. 1984. Growth energetics of nestling gannets (Sula bassanus). Auk 101: 334–351. Web of Science®Google Scholar Nunez-de la Mora, A., H. Drummond, and J. C. Wingfield. 1996. Hormonal correlates of dominance and starvation-induced aggression in chicks of the Blue-footed Booby. Ethology 102: 748–761. 10.1111/j.1439-0310.1996.tb01164.x Google Scholar Oyan, H. S., and T. Anker-Nilssen. 1996. Allocation of growth in food-stressed Atlantic Puffin chicks. Auk 113: 830–841. 10.2307/4088861 Web of Science®Google Scholar Perrins, C. M., and R. H. McCleery. 2001. The effect of fledging mass on the lives of Great Tits Parus major. Ardea 89 (Special Issue S1): 135–142. Google Scholar Reynolds, D. S., and T. H. Kunz. 2001. Standard methods for destructive body composition analysis. In: Body composition analysis of animals: a handbook of non-destructive methods ( J. R. Speakman, ed.), pp. 39–55. Cambridge University Press, Cambridge , UK . 10.1017/CBO9780511551741.004 Google Scholar Ricklefs, R. E., and S. C. White. 1981. Growth and energetics of chicks of the Sooty Tern and Common Tern. Auk 98: 361–378. Web of Science®Google Scholar Robinson, J. A., K. C. Hamer, and L. S. Chivers. 2002. Developmental plasticity in Arctic Terns Sterna paradisaea and Common Terns S. hirundo in response to a period of extremely bad weather. Ibis 144: 344–346. 10.1046/j.1474-919X.2002.00061.x Web of Science®Google Scholar Sagar, P. M., and D. S. Horning, Jr. 1998. Mass-related survival of fledgling Sooty Shearwaters Puffinus griseus at The Snares, New Zealand. Ibis 140: 329–331. 10.1111/j.1474-919X.1998.tb04397.x Web of Science®Google Scholar Schew, W. A., C. T. Collins, and T. E. Harvey. 1994. Growth and breeding biology of Caspian Terns in two coastal California environments. Colonial Waterbirds 17: 153–159. 10.2307/1521293 Web of Science®Google Scholar Schmidt-Nielsen, K. 1997. Animal physiology: adaptation and environment. Cambridge University Press, Cambridge , UK . 10.1017/9780511801822 Google Scholar Searcy, W. A., S. Peters, and S. Nowicki. 2004. Effects of early nutrition on growth rate and adult size in Song Sparrows Melospiza melodia. Journal of Animal Ecology 35: 269–279. Web of Science®Google Scholar Sears, J., and S. A. Hatch. 2008. Rhinoceros Auklet developmental responses to food limitation: an experimental study. Condor 110: 709–717. 10.1525/cond.2008.8531 Web of Science®Google Scholar J. M. Starck, and R. E. Ricklefs, eds. 1998. Avian growth and development: evolution within the altricial-precocial spectrum. Oxford University Press, Oxford , UK . 10.1093/oso/9780195106084.001.0001 PubMedWeb of Science®Google Scholar Stienen, E. W. M., and A. Brenninkmeijer. 2002. Variation in growth in Sandwich Tern chicks Sterna sandvicensis and the consequences for pre- and post-fledging mortality. Ibis 144: 567–576. 10.1046/j.1474-919X.2002.00086.x Web of Science®Google Scholar USFWS (U.S. Fish and Wildlife Service) . 2005. Caspian Tern management to reduce predation of juvenile salmonids in the Columbia River estuary. U. S. Fish and Wildlife Service, Migratory Birds and Habitat Programs, Portland, OR. Google Scholar Van de Pol, M., L. W. Bruinzeel, K. Heg, H. P. Van der Jeugd, and S. Verhulst. 2006. A silver spoon for a golden future: long-term effects of natal origin on fitness prospects of oystercatchers (Haematopus ostralegus). Journal of Animal Ecology 75: 616–626. 10.1111/j.1365-2656.2006.01079.x CASPubMedWeb of Science®Google Scholar Weathers, W. W. 1992. Scaling nestling energy requirements. Ibis 134: 142–153. 10.1111/j.1474-919X.1992.tb08391.x Web of Science®Google Scholar Wingfield, J. C., and D. S. Farner. 1975. The determination of five steroids in avian plasma by radioimmunoassay and competitive protein binding. Steroids 26: 311–327. 10.1016/0039-128X(75)90077-X CASPubMedWeb of Science®Google Scholar Wingfield, J. C., C. M. Vleck, and M. C. Moore. 1992. Seasonal changes of the adrenocortical response to stress in birds of the Sonoran desert. Journal of Experimental Zoology 264: 419–428. 10.1002/jez.1402640407 CASPubMedWeb of Science®Google Scholar Citing Literature Volume82, Issue1March 2011Pages 88-100 ReferencesRelatedInformation
Referência(s)