A 1 mA Ultra-Low-Power FHSS TX Front-End Utilizing Direct Modulation With Digital Pre-Distortion
2007; Institute of Electrical and Electronics Engineers; Volume: 42; Issue: 10 Linguagem: Inglês
10.1109/jssc.2007.905229
ISSN1558-173X
AutoresEmanuele Lopelli, Johan D. van der Tang, Arthur van Roermund,
Tópico(s)Full-Duplex Wireless Communications
ResumoThis paper deals with the system and circuit-level aspects of an ultra-low-power robust wireless node for an asymmetric wireless link. A single building block TX front-end for a frequency hopping spread spectrum (FHSS) transmitter implemented in silicon-on-anything (SOA) bipolar technology is presented. It is realized with a directly modulated RF cascoded Colpitts power voltage-controlled oscillator (VCO), a frequency locked loop for center frequency calibration, and a digital pre-distortion algorithm for accurate frequency bins synthesis. The TX front-end draws only 1 mA at -18 dBm output power. By combining digital system techniques for frequency hopping and merging the VCO and the power amplifier (PA), a robust solution is obtained for indoor ultra-low-power wireless links. The proposed pre-distortion concept allows reduction of the hardware complexity, while the combination of a cascode output buffer and a common-collector Colpitts VCO allows us to reduce the complete FHSS front-end to a single building block that directly drives the antenna through a balun. A dedicated digital algorithm on the receiver side reduces the center frequency offset from a maximum value of 8.2 MHz to less than 8 ppm avoiding the use of any crystal on the transmitter side. Precision in the hopping synthesis is obtained by employing a ST-DFT based demodulator with differential encoding and an offset sending technique. The novel FHSS-predistortion concept has been verified by realizing a full wireless link that achieves a bit error rate better than 1.1% at -25 dBm output power while transmitting across an 8 meters indoor non-line-of-sight (NLOS) path.
Referência(s)