
Phase equilibrium data and thermodynamic modeling of the system (CO2+biodiesel+methanol) at high pressures
2011; Elsevier BV; Volume: 44; Issue: 1 Linguagem: Inglês
10.1016/j.jct.2011.07.019
ISSN1096-3626
AutoresLeandro Ferreira‐Pinto, Diogo Italo Segalen da Silva, Fabiano Rosa da Silva, Luiz Pereira Ramos, Papa M. Ndiaye, Marcos L. Corazza,
Tópico(s)Chemical Thermodynamics and Molecular Structure
ResumoThe main objective of this work was to investigate the high pressure phase behavior of the binary systems {CO2(1) + methanol(2)} and {CO2(1) + soybean methyl esters (biodiesel)(2)} and the ternary system {CO2(1) + biodiesel(2) + methanol(3)} were determined. Biodiesel was produced from soybean oil, purified, characterized and used in this work. The static synthetic method, using a variable-volume view cell, was employed to obtain the experimental data in the temperature range of (303.15 to 343.15) K and pressures up to 21 MPa. The mole fractions of carbon dioxide were varied according to the systems as follows: (0.2383 to 0.8666) for the binary system {CO2(1) + methanol(2)}; (0.4201 to 0.9931) for the binary system {CO2(1) + biodiesel(2)}; (0.4864 to 0.9767) for the ternary system {CO2(1) + biodiesel(2) + methanol(3)} with a biodiesel to methanol molar ratio of (1:3); and (0.3732 to 0.9630) for the system {CO2 + biodiesel + methanol} with a biodiesel to methanol molar ratio of (8:1). For these systems, (vapor + liquid), (liquid + liquid), (vapor + liquid + liquid) transitions were observed. The phase equilibrium data obtained for the systems were modeled using the Peng–Robinson equation of state with the classical van der Waals (PR-vdW2) and Wong-Sandler (PR–WS) mixing rules. Both thermodynamic models were able to satisfactorily correlate the phase behavior of the systems investigated and the PR–WS presented the best performance.
Referência(s)