Artigo Acesso aberto Revisado por pares

Fracture in teeth-a diagnostic for inferring bite force and tooth function

2011; Wiley; Volume: 86; Issue: 4 Linguagem: Inglês

10.1111/j.1469-185x.2011.00181.x

ISSN

1469-185X

Autores

James J.-W. Lee, Paul J. Constantino, Peter W. Lucas, Brian R. Lawn,

Tópico(s)

Turtle Biology and Conservation

Resumo

Biological ReviewsVolume 86, Issue 4 p. 959-974 Fracture in teeth—a diagnostic for inferring bite force and tooth function James J.-W. Lee, Corresponding Author James J.-W. Lee Ceramics Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA (E-mail: [email protected]).Search for more papers by this authorPaul J. Constantino, Paul J. Constantino Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA Department of Biology, Marshall University, Huntington, WV 25755, USASearch for more papers by this authorPeter W. Lucas, Peter W. Lucas Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USASearch for more papers by this authorBrian R. Lawn, Brian R. Lawn Ceramics Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USASearch for more papers by this author James J.-W. Lee, Corresponding Author James J.-W. Lee Ceramics Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA (E-mail: [email protected]).Search for more papers by this authorPaul J. Constantino, Paul J. Constantino Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA Department of Biology, Marshall University, Huntington, WV 25755, USASearch for more papers by this authorPeter W. Lucas, Peter W. Lucas Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USASearch for more papers by this authorBrian R. Lawn, Brian R. Lawn Ceramics Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USASearch for more papers by this author First published: 20 April 2011 https://doi.org/10.1111/j.1469-185X.2011.00181.xCitations: 62Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Teeth are brittle and highly susceptible to cracking. We propose that observations of such cracking can be used as a diagnostic tool for predicting bite force and inferring tooth function in living and fossil mammals. Laboratory tests on model tooth structures and extracted human teeth in simulated biting identify the principal fracture modes in enamel. Examination of museum specimens reveals the presence of similar fractures in a wide range of vertebrates, suggesting that cracks extended during ingestion or mastication. The use of 'fracture mechanics' from materials engineering provides elegant relations for quantifying critical bite forces in terms of characteristic tooth size and enamel thickness. The role of enamel microstructure in determining how cracks initiate and propagate within the enamel (and beyond) is discussed. The picture emerges of teeth as damage-tolerant structures, full of internal weaknesses and defects and yet able to contain the expansion of seemingly precarious cracks and fissures within the enamel shell. How the findings impact on dietary pressures forms an undercurrent of the study. IX. REFERENCES Amizuka, N., Uchida, T., Fukae, M., Yamada, M. & Ozawa, H. (1992). Ultrastructural and immunocytochemical studies of enamel tufts in human permanent teeth. Archives of Histology and Cytology 55, 179–90. Amizuka, N., Uchida, T., Nozawa-Inoue, K., Kawano, Y., Suzuki, A., Li, M., Nasu, M., Kojima, T., Sakagami, N., Ozawa, H. & Maeda, T. (2005). Ultrastructural images of enamel tufts in human permanent teeth. Journal of Oral Bioscience 47, 33–41. Bacon, J. R. & Rhodes, M. J. C. (2000). Binding affinity of hydrolyzable tannins to parotid saliva and to proline-rich proteins derived from it. Journal of Agricultural and Food Chemistry 48, 838–43. Bajaj, D. & Arola, D. D. (2009a). On the R-curve behavior of human tooth enamel. Biomaterials 30, 4037–46. Bajaj, D. & Arola, D. D. (2009b). Role of prism decussation on fatigue crack growth and fracture of human enamel. Biomaterials 30, 4037–46. Barani, A., Keown, A. J., Bush, M. B., Lee, J. J.-W., Chai, H. & Lawn, B. R. (2011). Mechanics of longitudinal cracks in tooth enamel. Acta Biomaterialia 7, 2285–2292. Berthaume, M., Grosse, I. R., Patel, N. D., Strait, D. S., Wood, S. & Richmond, B. G. (2010). The effect of early hominin occlusal morphology on the fracturing of hard food items. The Anatomical Record 293, 594–606. Beynon, A. D. & Wood, B. A. (1986). Variations in enamel thickness and structure in East-African hominids. American Journal of Physical Anthropology 70, 177–93. Bodecker, C. F. (1906). Enamel of the teeth decalified by the celloidin method and examined with ultra-violet light. Dental Reviews 20, 317–37. Bodecker, C. F. (1953). Enamel lamellae and their origin. Journal of Dental Research 32, 239–45. Bowden, F. P. & Tabor, D. (1986). The Friction and Lubrication of Solids, Second edition. Clarendon Press, Oxford. Boyde, A. & Martin, L. (1982). Enamel microstructure determination in hominoid and cercopithecoid primates. Anatomay and Embryology 165, 193–212. Braun, S., Bantleon, H. P., Hnat, W. P., Freudenthaler, J. W., Marcotte, M. R. & Johnson, B. E. (1995). A study of bite force. 1. Relationship to various physical characteristics. Angle Orthodontist 65, 367–72. Chai, H. & Lawn, B. R. (2007). A universal relation for edge chipping from sharp contacts in brittle materials: A simple means of toughness evaluation. Acta Materialia 55, 2555–61. Chai, H., Lee, J. J.-W., Constantino, P. J., Lucas, P. W. & Lawn, B. R. (2009a). Remarkable resilience of teeth. Proceedings of the National Academy of Sciences of the United States of America 106, 7289–93. Chai, H., Lee, J. J.-W., Kwon, J.-Y., Lucas, P. & Lawn, B. R. (2009b). A simple model for enamel fracture from margin cracks. Acta Biomaterialia 5, 1663–67. Chai, H., Lee, J. J.-W. & Lawn, B. R. (2010). Fracture of tooth enamel from incipient microstructural defects. Journal of Mechanical Behavior of Biomedical Materials 3, 116–20. Chai, H., Lee, J. J.-W. & Lawn, B. R. (2011). On the chipping and splitting of teeth. Journal of Mechanical Behavior of Biomedical Materials 4, 315–21. Coley, P. D. (1983). Herbivory and defensive characteristics of tree species in a lowland tropical forest. Ecological Monographs 53, 209–33. Constantino, P. J., Lee, J. J.-W., Chai, H., Zipfel, B., Ziscovici, C., Lawn, B. R. & Lucas, P. W. (2010). Tooth chipping can reveal the diet and bite forces of fossil hominins. Biology Letters 6, 826–29. Constantino, P. J., Lee, J. J.-W., Morris, D., Lucas, P. W., Harstone-Rose, A., Lee, W.-K., Dominy, N. J., Cunningham, A., Wagner, M. & Lawn, B. R. (in press). Adaptation to hard-object feeding in sea otters and hominins. Journal of Human Evolution . Constantino, P. J., Lucas, P. W., Lee, J. J.-W. & Lawn, B. R. (2009). The influence of fallback foods on great ape tooth enamel. Amer. J. Phys. Anthrop. 140, 653–60. Corruccini, R. S. & Henderson, A. M. (1978). Multivariate dental allometry in primates. American Journal of Physical Anthropology 48, 203–08. Crompton, A. W. & Parkyn, D. G. (1963). On the lower jaw of Diarthrognathnus and the origin of the mammalian lower jaw. Proceedings of the Zoological Society of London 140, 697–749. Cuy, J. L., Mann, A. B., Livi, K. J., Teaford, M. F. & Weihs, T. P. (2002). Nanoindentation mapping of the mechanical properties of human molar tooth enamel. Archives of Oral Biology 7, 281–91. Darnell, L. A., Teaford, M. F., Livi, K. J. T. & Weihs, T. P. (2010). Variations in the mechanical properties of Aloutta palliata molar enamel. American Journal of Physical Anthropology 141, 7–15. Dean, M. C., Jones, M. E. & Pilley, J. R. (1992). The natural history of tooth wear, continuous eruption and periodontal disease in wild shot great apes. Journal of Human Evolution 22, 23–39. DeGusta, D., Everett, M. A. & Milton, K. (2003). Natural selection on molar size in a wild population of howler monkeys (Alouatta palliata). Proceedings of the Royal Society of London Series B 270, S15–17. Demes, B. & Creel, N. (1988). Bite force, diet and cranial morphology of fossil hominids. Journal Human Evolution 17, 657–70. Elgart, A. A. (2010). Dental wear, wear rate, and dental disease in the African apes. American Journal of Primatology 72, 481–91. Ford, C., Bush, M. B. & Lawn, B. R. (2009). Effect of wear on stresses and potential failure modes in teeth. Journal of Materials Science: Materials Medicine 20, 2243–47. Fortelius, M. (1985). Ungulate cheek teeth: developmental, functional and evolutionary interrelations. Acta Zoologica Fennica 180, 1–76. Fortelius, M. & Solounias, N. (2000). Functional characterization of ungulate molars using the abrasion-attrition wear gradient: a new method for reconstructing paleodiets. American Museum Novitates 3301, 1–36. Gingerich, P. D., Smith, B. H. & Rosenberg, K. R. (1982). Allometric scaling in the dentition of primates and prediction of body weight from tooth size in fossils. American Journal of Physical Anthropology 58, 81–100. Greaves, W. S. (1978). Jaw lever system in ungulates—a new model. Journal of Zoology 184, 271–85. Griffith, A. A. (1920). The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London A221, 163–98. Grine, F. E. (1981). Trophic differences between 'gracile' and 'robust' australopithecines: a scanning electron microscope analysis of occlusal events. South African Journal of Science 7, 203–30. Grine, F. E., Judex, S., Daegling, D. J., Ozcivici, E., Ungar, P. S., Teaford, M. F., Sponheimer, M., Scott, J., Scott, R. S. & Walker, A. (2010). Craniofacial biomechanics and functional and dietary inferences in hominin paleontology. Journal Human Evolution 58, 293–308. Grine, F. E., Spencer, M. A., Demes, B., Smith, H. F., Strait, D. S. & Constant, D. A. (2005). Molar enamel thickness in the chacma baboon, Papio ursinus (Kerr 1792). American Journal of Physical Anthropology 128, 812–22. Grippo, J. O., Simring, M. & Schreiner, S. (2004). Attrition, abrasion, corrosion and abfraction revisited. Journal of the American Dental Association 135, 1109–18. Guidoni, G. M., Swain, M. V. & Jager, I. (2009). Wear behaviour of dental enamel at the nanoscale with a sharp and blunt indenter tip. Wear 266, 60–68. He, L. H., Fujisawa, N. & Swain, M. V. (2006). Elastic modulus and stress–strain response of human enamel by nano-indentation. Biomaterials 27, 4388–98. He, L. H. & Swain, M. V. (2007a). Contact induced deformation of enamel. Applied Physics Letters 90, 171916, 1–3. He, L. H. & Swain, M. V. (2007b). A 'metallic-like' deformable biocomposite. Journal of Dentistry 35, 431–37. He, L. H. & Swain, M. V. (2007c). Influence of environment on the mechanical behavior of mature human enamel. Biomaterials 28, 4512–20. He, L. H. & Swain, M. V. (2008). Understanding the mechanical behavior of human enamel from its structural and compositional characteristics. Journal of the Mechanical Behavior of Biomedical Materials 1, 18–29. Hwang, S. H. (in press). The evolution of dinosaur tooth enamel microstructure. Biological Reviews of the Cambridge Philosophical Society, DOI: 10.1111/j.1469-185X.2010.00142.x. Janis, C. M. & Fortelius, M. (1988). On the means whereby mammals achieve increased functional durability of their dentitions, with special reference to limiting factors. Biological Reviews of the Cambridge Philosophical Society 63, 197–230. Kay, R. F. (1981). The nut-crackers—a new theory of the adaptations of the Ramapithecinae. American Journal of Physical Anthropology 55, 141–51. Kay, R. F. & Grine, F. E. (1988). Tooth morphology, wear and diet in Australopithecus and Paranthropus from Southern Africa. In Evolutionary History of the "Robust" Australopithecines (ed. F. E. Grine), pp. 427–47. Aldine de Gruyter, New York. Kelley, J. & Schwartz, G. T. (2010). Dental development and life history in living African and Asian apes. Proceedings of the National Academy of Sciences of the United States of America 107, 1035–40. Kiltie, R. A. (1982). Bite force as a basis for niche differentiation between rain-forest peccaries (Tayassu tajacu and T. pecari). Biotropica 14, 188–95. Kim, J.-W., Bhowmick, S., Chai, H. & Lawn, B. R. (2007). Role of substrate material in failure of crown-like layer structures. Journal of Biomedical Materials Research 81B, 305–11. King, S. J., Arrigo-Nelson, S. J., Pochron, S. T., Semprebon, G. M., Godfrey, L. R., Wright, P. C. & Jernvall, J. (2005). Dental senescence in a long-lived primate links infant survival to rainfall. Proceedings of the National Academy of Sciences of the United States of America 102, 16579–83. Koenigswald, W. V., Rensberger, J. M. & Pretzschner, H. U. (1987). Changes in the tooth enamel of early Paleocene mammals allowing increased diet diversity. Nature 328, 159–62. Kono, R. T. (2004). Molar enamel thickness and distribution patterns in extant great apes and humans: new insights based on a 3-dimensional whole crown perspective. Anthropological Science 112, 121–46. Kono, R. T., Suwa, G. & Tanijiri, T. (2002). A three-dimensional analysis of enamel distribution patterns in human permanent first molars. Archives of Oral Biology 47, 867–75. Lawn, B. R. (1993). Fracture of Brittle Solids, Second edition. Cambridge University Press, Cambridge. Lawn, B. R., Bhowmick, S., Bush, M. B., Qasim, T., Rekow, E. D. & Zhang, Y. (2007). Failure modes in ceramic-based layer structures: a basis for materials design of dental crowns. Journal of the American Ceramic Society 90, 1671–83. Lawn, B. R. & Evans, A. G. (1977). A model for crack initiation in elastic/plastic indentation fields. Journal of Materials Science 12, 2195–99. Lawn, B. R. & Lee, J. J.-W. (2009). Analysis of fracture and deformation in teeth subjected to occlusal loading. Acta Biomaterialia 5, 2213–21. Lawn, B. R., Lee, J. J.-W. & Chai, H. (2010). Teeth: among nature's most durable biocomposites. Annual Reviews of Materials Research 40, 55–75. Lawn, B. R., Lee, J. J.-W., Constantino, P. J. & Lucas, P. W. (2009). Predicting failure in mammalian enamel. Journal of Mechanical Behavior of Biomedical Materials 2, 33–42. Lawn, B. R., Padture, N. P., Cai, H. & Guiberteau, F. (1994). Making ceramics 'ductile'. Science 263, 1114–16. Lee, J. J.-W., Kwon, J.-Y., Chai, H., Lucas, P. W., Thompson, V. P. & Lawn, B. R. (2009). Fracture modes in human teeth. Journal of Dental Research 88, 224–29. Lee, J. J.-W., Morris, D., Constantino, P. J., Smith, T. M. & Lawn, B. R. (2010). Properties of tooth enamel in great apes. Acta Biomaterialia 6, 4560–65. Logan, M. & Sanson, G. D. (2002). The association of tooth wear with sociality of free-ranging male koalas (Phascolarctos cinereus Goldfuss). Australian Journal of Zoology 50, 621–26. Lucas, P. W. (2004). Dental Functional Morphology: How Teeth Work. Cambridge University Press, Cambridge, U.K. Lucas, P. W., Constantino, P. J., Wood, B. A. & Lawn, B. R. (2008). Dental enamel as a dietary indicator in mammals. BioEssays 30, 374–85. Lucas, P. W., Peters, C. R. & Arrandale, S. (1994). Seed-breaking forces exerted by orangutans with their teeth in captivity and a new technique for estimating forces produced in the wild. Amer. J. Phys. Anthrop. 9, 365. Maas, M. C. & Dumont, E. R. (1999). Built to last: the structure, function, and evolution of primate dental enamel. Evolutionary Anthropology 8, 133–52. Marshall, A. J., Ancrenaz, M., Brearley, F. Q., Fredriksson, G., Ghaffar, N., Heydon, M., Husson, S., Leighton, M., McConkey, K. R., Morrogh-Bernard, H., Proctor, J., vanSchaik, C. P., Yeager, C. P. & Wich, S. A. (2009). The effects of forest phenology and floristics on populations of Bornean and Sumatran orangutans: Are Sumatran forests better orangutan habitat than Bornean forests? In Orangutans: Geographic Variation in Behavioral Ecology and Conservation (eds S. A. Wich, S. Utami, T. M. Setia and C. P. vanSchaik), pp. 97–117. Oxford University Press, Oxford. Marshall, D. B., Cox, B. N. & Evans, A. G. (1985). The mechanics of matrix cracking in brittle-matrix fibre composites. Acta Metallurgica 23, 2013–21. Martin, L. (1985). Significance of enamel thickness in hominoid evolution. Nature 314, 260–263. McArthur, C., Sanson, G. D. & Beal, A. M. (1995). Salivary proline-rich proteins in mammals—roles in oral homeostasis and counteracting dietary tannin. Journal of Chemical Ecology 21, 663–91. Molnar, S. & Gantt, D. G. (1977). Funtional implications of primate enamel thickness. American Journal of Physical Anthropology 46, 447–454. Myoung, S., Lee, J. J.-W., Constantino, P. J., Lucas, P. W., Chai, H. & Lawn, B. R. (2009). Morphology and fracture of enamel. Journal of Biomechanics 42, 1947–51. Olejniczak, A. J., Tafforeau, P., Feeney, R. N. M. & Martin, L. B. (2008). Three-dimensional primate molar enamel thickness. Journal of Human Evolution 54, 187–95. Osborn, J. W. (1969). The 3-dimensional morphology of the tufts in human enamel. Acta Anatomica 73, 481–95. Osborn, J. W. (1981). Dental tissues. In Dental Anatomy and Embryology, vol. 1(ed. J. W. Osborn). Blackwell, Oxford. Palamara, J., Phakey, P. P., Rachinger, W. A. & Orams, H. J. (1989). The ultrastructure of spindles and tufts in human dental enamel. Advanced Dental Research 3, 249–57. Perzigian, A. J. (1981). Allometric analysis of dental variation in a human population. American Journal of Physical Anthropology 54, 341–45. Piperno, D. R. (2006). Phytoliths: A Comprehensive Guide for Archaeologists and Paleoecologists. AltaMira Press, Lanham, MD. Popowics, T. E., Rensberger, J. M. & Herring, S. W. (2001). The fracture behavior of human and pig molar cusps. Archives of Oral Biology 46, 1–12. Prinz, J. F. & Lucas, P. W. (2000). Saliva tannin interactions. Journal of Oral Rehabilitation 27, 991–94. Qasim, T., Bush, M. B., Hu, X. & Lawn, B. R. (2005). Contact damage in brittle coating layers: influence of surface curvature. Journal of Biomedical Materials Research 73B, 179–85. Qasim, T., Ford, C., Bush, M. B., Hu, X. & Lawn, B. R. (2006). Effect of off-axis concentrated loading on failure of curved brittle layer structures. Journal of Biomedical Materials Research 76B, 334–39. Qasim, T., Ford, C., Bush, M. B., Hu, X., Malament, K. A. & Lawn, B. R. (2007). Margin failures in brittle dome structures: relevance to failure of dental crowns. Journal of Biomedical Materials Research 80B, 78–85. Rayfield, E. J., Norman, D. B., Horner, C. C., Horner, J. R., Smith, P. M., Thomason, J. J. & Upchurch, P. (2001). Cranial design and function in a large theropod dinosaur. Nature 409, 1033–37. Rensberger, J. M. (2000). Pathways to functional differentiation in mammalian enamel. In Development, Function and Evolution of Teeth (eds M. F. Teaford, M. M. Smith and M. W. J. Ferguson), pp. 252–68. Cambridge University Press, Cambridge. Rensberger, J. M., Forsten, A. & Fortelius, M. (1984). Functional evolution of the cheek tooth pattern and chewing direction in tertiary horses. Paleobiology 10, 439–52. Roach, D. H., Lathabai, S. & Lawn, B. R. (1988). Interfacial layers in brittle cracks. Journal of the American Ceramic Society 71, 97–105. Robinson, C., Brooks, S. J., Bonass, W. A., Shore, R. C. & Kirkham, J. (1997). Enamel Maturation. In CIBA Foundation Symposia 205—Dental enamel, vol. 205, pp. 156–74. John Wiley, Chichester. Robinson, J. T. (1954). Prehominid dentition and hominid evolution. Evolution 8, 324–34. Rudas, M., Qasim, T., Bush, M. B. & Lawn, B. R. (2005). Failure of curved brittle layer systems from radial cracking in concentrated loading. Journal of Materials Research 20, 2812–19. Sander, P. M. (2000). Prismless enamel in amniotes: terminology, function, and evolution. In Development, Function and Evolution of Teeth (eds M. F. Teaford, M. M. Smith and M. W. J. Ferguson), pp. 92–106. Cambridge University Press, Cambridge. Sauther, M. L. & Cuozzo, F. P. (2009). The impact of fallback foods on wild ring-tailed lemur biology: A comparison of intact and anthropogenically disturbed habitats. American Journal of Physical Anthropology 140, 671–86. Schwartz, G. T. (2000). Taxonomic and functional aspects of the patterning of enamel thickness distribution in extant large-bodied hominoids. American Journal of Physical Anthropology 111, 221–244. Shellis, R. P., Beynon, A. D., Reid, D. J. & Hiiemae, K. M. (1998). Variations in molar enamel thickness among primates. Journal of Human Evolution 35, 507–522. Shellis, R. P. & Didbin, G. H. (2000). Enamel microporosity and its functional implications. In Development, Function and Evolution of Teeth (eds M. F. Teaford, M. M. Smith and M. W. J. Ferguson), pp. 242–51. Cambridge University Press, Cambridge. Smith, T. M., Olejniczak, A. J., Martin, L. B. & Reid, D. J. (2005). Variation in hominid molar enamel thickness. Journal of Human Evolution 48, 575–92. Sognnaes, R. F. (1949). The organic elements of enamel. II. The organic framework of the internal part of the enamel, with special regard to the organic basis for the so-called tufts and schreger bands. Journal of Dental Research 28, 549–57. Sognnaes, R. F. (1950). The organic elements of enamel. IV. The gross morphology and the histological relationship of the lamellae to the organic framework of the enamel. Journal of Dental Research 29, 260–269. Spencer, M. A. (1998). Force production in the primate masticatory system: electromyographic tests of biomechanical hypotheses. Journal of Human Evolution 34, 25–54. Strait, D. S., Weber, G. W., Neubauer, S., Chalk, J., Richmond, B. G., Lucas, P. W., Spencer, M. A., Schrein, C., Dechow, P. C., Ross, C. F., Grosse, I. R., Wright, B. W., Contantino, P. J., Wood, B. A., Lawn, B. R., Hylander, W. L., Wang, Q., Slice, D. E., Byron, C. & Smith, A. L. (2009). The feeding biomechanics and dietary ecology of Australopithecus africanus. Proceedings of the National Academy of Sciences of the United States of America 106, 2124–29. Tabor, D. (1951). Hardness of Metals. Clarendon, Oxford. Teaford, M. F. (1988). A review of dental microwear and diet in modern mammals. Scanning Microscopy 2, 1149–66. Teaford, M. F. & Ungar, P. S. (2000). Diet and the evolution of the earliest human ancestors. Proceedings of the National Academy of Sciences of the United States of America 97, 13506–11. ten Cate, A. R. (1989). Oral Histology: Development, Structure, and Function, Third edition. Mosby, St. Louis. Thomason, J. J. (1991). Cranial strength in realtion to estimated biting forces in some mammals. Canadian Journal of Zoology-Revue Canadienne De Zoologie 69, 2326–33. Tobias, P. V. (1967). The Cranium and Maxillary Dentition of Australopithecus (Zinjanthropus) boisei. Olduvai Gorge. Cambridge University Press, Cambridge, UK. Ungar, P. S. (1990). Incisor microwear and feeding behavior in Alouatta seniculus and Cebus olivaceus. American Journal of Primatology 20, 43–50. Ungar, P. S. (1998). Dental allometry, morphology, and wear as evidence for diet in fossil primates. Evolutionary Anthropology 6, 205–17. Ungar, P. S., Teaford, M. F., Glander, K. E. & Pastor, R. F. (1995). Dust accumulation in the canopy—a potential cause of dental microwear in primates. American Journal of Physical Anthropology 97, 93–99. Vogel, E. R., Woerden, J. T. v., Lucas, P. W., Atmoko, S. S. U., Schaik, C. P. v. & Dominy, N. J. (2008). Functional ecology and evolution of hominoid molar enamel thickness: Pan troglodytes schweinfurthii and Pongo pymgaeus wurmbii. Journal of Human Evolution 55, 60–74. Walker, A. C. (1981). Diet and teeth: dietary hypotheses and human evolution. Philosophical Transactions of the Royal Society of London B292, 57–64. Wallace, J. A. (1973). Tooth chipping in the australopithicenes. Nature 244, 117–18. Ward, C. V., Leakey, M. G. & Walker, A. (2001). Morphology of Australopithecus anamensis from Kanapoi and Allia Bay, Kenya. Journal Human Evolution 41, 255–368. Will, P. D., River, J. D. & Rosen, S. (1971). Frequency of enamel lamellae in molars of rats on coarse and fine particle diets. Journal of Dental Research 50, 902–05. Wood, B. A. & Stack, C. G. (1980). Does allometry explain the differences between 'gracile' and 'robust' australopithecines? American Journal of Physical Anthropology 52, 55–62. Wroe, S., Ferrara, T. L., McHenry, C. R., Curnoe, D. & Chamoli, U. (2010). The craniomandibular mechanics of being human. Proceedings of the Royal Society of London B . Wroe, S., McHenry, C. R. & Thomason, J. (2005). Bite club: comparative bite force in big biting mammals and the prediction of predatory behavior in fossil taxa. Proceedings of the Royal Society of London B272, 619–25. Xie, Z.-H., Swain, M. V. & Hoffmann, M. J. (2009a). Structural integrity of enamel: experimental and modeling. Journal of Dental Research 88, 529–33. Xie, Z.-H., Swain, M. V., Swadener, G., Munro, P. & Hoffmann, M. (2009b). Effect of microstructure upon elastic behavior of human tooth enamel. Journal of Biomechanics 42, 1075–80. Citing Literature Volume86, Issue4November 2011Pages 959-974 ReferencesRelatedInformation

Referência(s)