The interactions of abiotic and biotic factors influencing perch Perca fluviatilis and roach Rutilus rutilus populations in small acidified boreal lakes
2011; Wiley; Volume: 79; Issue: 2 Linguagem: Inglês
10.1111/j.1095-8649.2011.03040.x
ISSN1095-8649
AutoresArne Linløkken, Trygve Hesthagen,
Tópico(s)Isotope Analysis in Ecology
ResumoJournal of Fish BiologyVolume 79, Issue 2 p. 431-448 The interactions of abiotic and biotic factors influencing perch Perca fluviatilis and roach Rutilus rutilus populations in small acidified boreal lakes A. N. Linløkken, Corresponding Author A. N. Linløkken Hedmark College, Faculty of Education and Science, P. O. Box 4010, N-2306 Hamar, Norway Tel.: +47 62 51 78 69; email: [email protected]Search for more papers by this authorT. Hesthagen, T. Hesthagen Norwegian Institute of Nature Research, Tungasletta 2, N-7485 Trondheim, NorwaySearch for more papers by this author A. N. Linløkken, Corresponding Author A. N. Linløkken Hedmark College, Faculty of Education and Science, P. O. Box 4010, N-2306 Hamar, Norway Tel.: +47 62 51 78 69; email: [email protected]Search for more papers by this authorT. Hesthagen, T. Hesthagen Norwegian Institute of Nature Research, Tungasletta 2, N-7485 Trondheim, NorwaySearch for more papers by this author First published: 22 July 2011 https://doi.org/10.1111/j.1095-8649.2011.03040.xCitations: 3Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Four small, acidified boreal lakes, all sustaining populations of perch Perca fluviatilis, roach Rutilus rutilus and pike Esox lucius, were studied in four successive years. Three lakes were moderately acidified (mean pH of 5·61–5·83), while the fourth was more acidic (mean pH of 5·16) and had a sparse population of R. rutilus. Perca fluviatilis density was higher in this lake (1004 ha−1) than in the other three (355–717 ha−1), where R. rutilus dominated in terms of numbers (981–2185 ha−1). Large, potentially predatory, P. fluviatilis were most abundant in the lake with clearest water, and these seemed to have a negative effect on P. fluviatilis density. Perca fluviatilis mean mass was negatively correlated with R. rutilus biomass and was highest in the most acidic lake with the sparse R. rutilus and the highest P. fluviatilis density. Perca fluviatilis mass correlated positively with pH in two lakes (with the highest fish biomass), suggesting that low pH affected P. fluviatilis mass negatively. Perca fluviatilis growth correlated positively with summer (July to August) air temperature in the lake with sparse R. rutilus, thus differing from P. fluviatilis and R. rutilus growth in the other three lakes. The mean age of P. fluviatilis was generally lower than that of R. rutilus and was lowest in the two lakes with the highest fish biomass, indicating that adult mortality was affected by density-induced factors. References Alm, G. (1946). Reasons for occurrence of stunted fish populations with special regard to perch. Report Institute of Freshwater Research 25, 1–146. Google Scholar Appelberg, M., Berger, H. M., Hesthagen, T., Kleiven, E., Kurkilahti, M., Raitaniemi, J. & Rask, M. (1995). Development and intercalibration of methods in Nordic freshwater fish monitoring. Water Air and Soil Pollution 85, 401–406. 10.1007/BF00476862 CASWeb of Science®Google Scholar Beamish, R. J. & McFarlane, G. A. (2000). Reevaluation of the interpretation of annuli from otoliths of a long-lived fish, Anoplopoma fimbria. Fisheries Research 46, 105–111. 10.1016/S0165-7836(00)00137-5 Web of Science®Google Scholar Begon, M., Harper, J. L. & Townsend, C. R. (1996). Ecology. Oxford: Blackwell Scientific. Google Scholar Bergman, E. (1990). Effects of roach Rutilus rutilus on two percids, Perca fluviatilis and Gymnocephalus cernua: importance of species interactions for diet shifts. Oikos 57, 241–249. 10.2307/3565946 Web of Science®Google Scholar Blanchet, F. G., Legendre, P. & Borcard, D. (2008). Forward selection of explanatory variables. Ecology 89, 2623–2632. 10.1890/07-0986.1 PubMedWeb of Science®Google Scholar Burrough, R. J. & Kennedy, C. R. (1979). Occurrence and natural alleviation of stunting in a population of roach, Rutilus rutilus (L). Journal of Fish Biology 15, 93–109. 10.1111/j.1095-8649.1979.tb03574.x Web of Science®Google Scholar Christensen, J. M. (1964). Burning of otoliths, a technique for age determination of soles and other fish. Journal du Conseil international pour l'Exploration de la Mer 26, 73–81. 10.1093/icesjms/29.1.73 Google Scholar Cleveland, L., Buckler, D. R. & Brumbaugh, W. G. (1991). Residue dynamics and effects of aluminum on growth and mortality in brook trout. Environmental Toxicology and Chemistry 10, 243–248. 10.1002/etc.5620100213 CASWeb of Science®Google Scholar Craig, J. F. (1977). Seasonal changes in day and night activity of adult perch, Perca fluviatilis L. Journal of Fish Biology 11, 161–166. 10.1111/j.1095-8649.1977.tb04109.x Web of Science®Google Scholar Crawley, M. J. (2007). The R Book. Chichester: Wiley. 10.1002/9780470515075 Google Scholar Degerman, E., Appelberg, M. & Nyberg, P. (1992). Effects of liming on the occurrence and abundance of fish populations in acidified Swedish lakes. Hydrobiologia 230, 201–212. 10.1007/BF00036566 CASWeb of Science®Google Scholar Driscoll, C. T., Baker, J. P., Bisogni, J. J. & Schofield, C. L. (1980). Effect of aluminum speciation on fish in dilute acidified waters. Nature 284, 161–164. 10.1038/284161a0 CASWeb of Science®Google Scholar Eklöv, P. & Persson, L. (1995). Species-specific antipredator capacities and prey refuges – interactions between piscivorous perch (Perca fluviatilis) and juvenile perch and roach (Rutilus rutilus). Behavioral Ecology and Sociobiology 37, 169–178. Web of Science®Google Scholar Eklöv, P. & Persson, L. (1996). The response of prey to the risk of predation: proximate cues for refuging juvenile fish. Animal Behaviour 51, 105–115. 10.1006/anbe.1996.0009 Web of Science®Google Scholar Estlander, S., Nurminen, L., Olin, M., Vinni, M., Immonen, S., Rask, M., Ruuhijarvi, J., Horppila, J. & Lehtonen, H. (2010). Diet shifts and food selection of perch Perca fluviatilis and roach Rutilus rutilus in humic lakes of varying water colour. Journal of Fish Biology 77, 241–256. 10.1111/j.1095-8649.2010.02682.x CASPubMedWeb of Science®Google Scholar Fiogbe, E. D. & Kestemont, P. (2003). Optimum daily ration for Eurasian perch Perca fluviatilis L. reared at its optimum growing temperature. Aquaculture 216, 243–252. 10.1016/S0044-8486(02)00409-X Web of Science®Google Scholar Harvey, H. H. & Jackson, D. A. (1995). Acid stress and extinction of a spring-spawning fish population. Water Air and Soil Pollution 85, 383–388. 10.1007/BF00476859 CASWeb of Science®Google Scholar Heibo, E. & Vøllestad, L. A. (2002). Life-history variation in perch (Perca. fluviatilis L.) in five neighbouring Norwegian lakes. Ecology of Freshwater Fish 11, 270–280. 10.1034/j.1600-0633.2002.00023.x Web of Science®Google Scholar Hesthagen, T., Berger, H. M., Larsen, B. M. & Nost, T. (1992). Abundance and population-structure of perch (Perca fluviatilis L.) in some acidic Norwegian lakes. Environmental Pollution 78, 97–101. 10.1016/0269-7491(92)90015-3 CASPubMedWeb of Science®Google Scholar Hesthagen, T., Berger, H. M., Schartau, A. K. L., Nøst, T., Saksgard, R. & Fløystad, L. (2001). Low success rate in re-establishing European perch in some highly acidified lakes in southernmost Norway. Water Air and Soil Pollution 130, 1361–1366. 10.1023/A:1013922420006 Web of Science®Google Scholar Holmgren, K. & Appelberg, M. (2001). Effects of environmental factors on size-related growth efficiency of perch, Perca fluviatilis. Ecology of Freshwater Fish 10, 247–256. 10.1034/j.1600-0633.2001.100407.x Web of Science®Google Scholar Holopainen, I. J. & Oikari, A. (1992). Ecophysiological effects of temporary acidification on crucial carp Carassius carassius L. – a case-history of a forest pond in eastern Finland. Annales Zoologici Fennici 29, 29–38. Web of Science®Google Scholar Horppila, J. & Nyberg, K. (1999). The validity of different methods in the backcalculation of the lengths of roach – a comparison between scales and cleithra. Journal of Fish Biology 54, 489–498. 10.1111/j.1095-8649.1999.tb00630.x Web of Science®Google Scholar Horppila, J., Ruuhijärvi, J., Rask, M., Karppinen, C., Nyberg, K. & Olin, M. (2000). Seasonal changes in the diets and relative abundances of perch and roach in the littoral and pelagic zones of a large lake. Journal of Fish Biology 56, 51–72. 10.1111/j.1095-8649.2000.tb02086.x Web of Science®Google Scholar Horppila, J., Olin, M., Vinni, M., Estlander, S., Nurminen, L., Rask, M., Ruuhijärvi, J. & Lehtonen, H. (2010). Perch production in forest lakes: the contribution of abiotic and biotic factors. Ecology of Freshwater Fish 19, 257–266. 10.1111/j.1600-0633.2010.00410.x Web of Science®Google Scholar Järvalt, A., Krause, T. & Palm, A. (2005). Diel migration and spatial distribution of fish in a small stratified lake. Hydrobiologia 547, 197–203. 10.1007/s10750-005-4160-z Web of Science®Google Scholar Jeppesen, E., Jensen, J. P., Søndergaard, M., Lauridsen, T. & Landkildehus, F. (2000). Trophic structure, species richness and biodiversity in Danish lakes: changes along a phosphorus gradient. Freshwater Biology 45, 201–218. 10.1046/j.1365-2427.2000.00675.x CASWeb of Science®Google Scholar Keinänen, M., Peuranen, S., Nikinmaa, M., Tigerstedt, C. & Vuorinen, P. J. (2000). Comparison of the responses of the yolk-sac fry of pike (Esox lucius) and roach (Rutilus rutilus) to low pH and aluminium: sodium influx, development and activity. Aquatic Toxicology 47, 161–179. 10.1016/S0166-445X(99)00021-1 CASWeb of Science®Google Scholar LeCren, E. D. (1947). The determination of the age and growth of perch (Perca fluviatilis) from opercular bone. Journal of Animal Ecology 16, 188–204. 10.2307/1494 Google Scholar LeCren, E. D. (1958). Observations on the growth of perch (Perca fluviatilis) over twenty-two years with special reference to effects of temperature and changes in population density. Journal of Animal Ecology 27, 287–334. 10.2307/2242 Web of Science®Google Scholar Leino, R. L. & McCormick, J. H. (1993). Responses of juvenile largemouth bass to different pH and aluminum levels at overwintering temperatures – effects on gill morphology, electrolyte balance, scale calcium, liver-glycogen, and depot fat. Canadian Journal of Zoology 71, 531–543. 10.1139/z93-074 CASWeb of Science®Google Scholar Lessmark, O. (1984). Competition between perch (Perca fluviatilis) and roach (Rutilus rutilus) in south Swedish lakes. Dissertation Abstracts International C, European Abstracts 45, 355. Google Scholar Linfield, R. S. J. (1980). Ecological changes in a lake fishery and their effects on a stunted roach Rutilus rutilus population. Journal of Fish Biology 16, 123–144. 10.1111/j.1095-8649.1980.tb03692.x Web of Science®Google Scholar Linløkken, A. (1988). Vertical distribution of brown trout (Salmo trutta) and perch (Perca fluviatilis) in an acidified lake. Water Air and Soil Pollution 40, 203–213. Web of Science®Google Scholar Linløkken, A. & Seeland, P. A. H. (1996). Growth and production of perch (Perca fluviatilis L.) responding to biomass removal. Annales Zoologici Fennici 33, 427–435. Web of Science®Google Scholar Linløkken, A., Bergman, E., Greenberg, L. & Seeland, P. A. H. (2008). Environmental correlates of population variables of perch (Perca fluviatilis) in boreal lakes. Environmental Biology of Fishes 82, 401–408. 10.1007/s10641-007-9301-y Web of Science®Google Scholar Milbrink, G. & Johansson, N. (1975). Some effects of acidification on roe of roach (Rutilus rutilus) and perch (Perca fluviatilis) with special reference to the Åvaå lake system in eastern Sweden. Report of the Institute of Freshwater Research Drottningholm 54, 52–62. Google Scholar Morgan, I. J., Dockray, J. J., D'Cruz, L. M. & Wood, C. M. (2000). The effect of ration on acclimation to environmental acidity in rainbow trout. Environmental Biology of Fishes 57, 67–74. 10.1023/A:1007535712043 Web of Science®Google Scholar Müller, R. & Meng, H. J. (1986). Factors governing the growth rate of roach Rutilus rutilus (L.) in Pre-Alpine Lake Sarnen. Swiss Journal of Hydrology 48, 135–144. 10.1007/BF02560193 Web of Science®Google Scholar Muniz, I. P. (1990). Fresh-water acidification – its effects on species and communities of fresh-water microbes, plants and animals. Proceedings of the Royal Society of Edinburgh B 97, 227–254. 10.1017/S0269727000005364 CASWeb of Science®Google Scholar Muniz, I. P. & Leivestad, H. (1980). Acidification – effects on freshwater fish. In Ecological Impact of Acid Precipitation ( D. Drabløs & A. Tollan, eds), pp. 84–92. Oslo: SNSF-Project (Acid Precipitation Effects on Forest and Fish). Google Scholar Neuman, E. (1976). The growth and year-class strength of perch in some Baltic archipelagos, with special reference to temperature. Report From Institute of Freshwater Research, Drottningholm 55, 51–70. Google Scholar Neville, C. M. (1985). Physiological response of juvenile rainbow trout (Salmo gairdneri) to acid and aluminium – prediction of field responses from laboratory data. Canadian Journal of Fisheries and Aquatic Sciences 42, 2004–2019. 10.1139/f85-248 CASWeb of Science®Google Scholar Niederholzer, R. & Hofer, R. (1980). The feeding of roach (Rutilus rutilus L.) and rudd (Scardinius erythrophthalmus L). 1. Studies on natural populations. Ekologia Polska-Polish Journal of Ecology 28, 45–59. Web of Science®Google Scholar Olin, M., Rask, M., Ruuhijärvi, J., Kurkilahti, M., Ala-Opas, P. & Ylönen, O. (2002). Fish community structure in mesotrophic and eutrophic lakes of southern Finland: the relative abundances of percids and cyprinids along a trophic gradient. Journal of Fish Biology 60, 593–612. 10.1111/j.1095-8649.2002.tb01687.x Web of Science®Google Scholar Olin, M., Vinni, M., Lehtonen, H., Rask, M., Ruuhijärvi, J., Saulamo, K. & Ala-Opas, P. (2010). Environmental factors regulate the effects of roach Rutilus rutilus and pike Esox lucius on perch Perca fluviatilis populations in small boreal forest lakes. Journal of Fish Biology 76, 1277–1293. 10.1111/j.1095-8649.2010.02559.x CASPubMedWeb of Science®Google Scholar Peltonen, H., Raitaniemi, J., Parmanne, R., Eklund, J., Nyberg, K. & Halling, F. (2002). Age determination of Baltic herring from whole otoliths and from neutral red stained otolith cross sections. ICES Journal of Marine Science 59, 323–332. 10.1006/jmsc.2001.1156 Web of Science®Google Scholar Persson, L. (1987). Competition-induced switch in young of the year perch, Perca fluviatilis– an experimental test of resource limitation. Environmental Biology of Fishes 19, 235–239. 10.1007/BF00005353 Web of Science®Google Scholar Persson, L. (1997). Competition, predation and environmental factors as structuring forces in freshwater fish communities: Sumari (1971) revisited. Canadian Journal of Fisheries and Aquatic Sciences 54, 85–88. 10.1139/f96-250 Web of Science®Google Scholar Persson, L. & Greenberg, L. A. (1990). Interspecific and intraspecific size class competition affecting resource use and growth of perch, Perca fluviatilis. Oikos 59, 97–106. 10.2307/3545128 Web of Science®Google Scholar Persson, L., Diehl, S., Johansson, L., Andersson, G. & Hamrin, S. F. (1991). Shifts in fish communities along the productivity gradient of temperate lakes – patterns and the importance of size-structured interactions. Journal of Fish Biology 38, 281–293. 10.1111/j.1095-8649.1991.tb03114.x Web of Science®Google Scholar Persson, L., Byström, P., Wahlström, E., Andersson, J. & Hjelm, J. (1999). Interactions among size-structured populations in a whole-lake experiment: size- and scale-dependent processes. Oikos 87, 139–156. 10.2307/3547005 Web of Science®Google Scholar Persson, L., Byström, P. & Wahlström, E. (2000). Cannibalism and competition in Eurasian perch: population dynamics of an ontogenetic omnivore. Ecology 81, 1058–1071. 10.1890/0012-9658(2000)081[1058:CACIEP]2.0.CO;2 Web of Science®Google Scholar Prchalova, M., Kubecka, J., Vasek, M., Peterka, J., Sed'a, J., Juza, T., Riha, M., Jarolim, O., Tuser, M., Kratochvil, M., Cech, M., Drastik, V., Frouzova, J. & Hohausova, E. (2008). Distribution patterns of fishes in a canyon-shaped reservoir. Journal of Fish Biology 73, 54–78. 10.1111/j.1095-8649.2008.01906.x Web of Science®Google Scholar Raitaniemi, J., Rask, M. & Vuorinen, P. J. (1988). The growth of perch, Perca fluviatilis L., in small Finnish lakes at different stages of acidification. Annales Zoologici Fennici 25, 209–219. Web of Science®Google Scholar Rask, M. (1983). Differences in growth of perch (Perca fluviatilis L.) in 2 small forest lakes. Hydrobiologia 101, 139–143. 10.1007/BF00008666 Web of Science®Google Scholar Rask, M. (1989). Perch, Perca fluviatilis L. in small lakes – relations between population characteristics and lake acidity. Internationale Revue der Gesamten Hydrobiologie 74, 169–178. 10.1002/iroh.19890740204 CASWeb of Science®Google Scholar Rask, M., Mannio, J., Forsius, M., Posch, M. & Vuorinen, P. J. (1995). How many fish populations in Finland are affected by acid precipitation. Environmental Biology of Fishes 42, 51–63. 10.1007/BF00002351 Web of Science®Google Scholar Ricker, W. E. (1975). Computation and interpretation of biological statistics of fish populations. Bulletin of the Fisheries Research Board of Canada 191. Google Scholar Ridgway, L. L. & Chapleau, F. (1994). Study of a stunted population of yellow perch (Perca flavescens) in a monospecific lake in Gatineau-Park, Quebec. Canadian Journal of Zoology 72, 1576–1582. 10.1139/z94-209 Web of Science®Google Scholar Robson, D. S. & Regier, H. A. (1964). Sample size in Petersen mark–recapture experiments. Transactions of the American Fisheries Society 93, 215–226. 10.1577/1548-8659(1964)93[215:SSIPME]2.0.CO;2 Google Scholar Rosseland, B. O., Sevaldrud, I., Svalastog, D. & Muniz, I. P. (1980). Studies on freshwater fish populations – effects of acidification on reproduction, population structure, growth, and food selection. In Ecological Impact of Acid Precipitation ( D. Drabløs & A. Tollan, eds), pp. 336–337. Oslo-Ås: SNSF-Project. Google Scholar Runn, P., Johansson, N. & Milbrink, G. (1977). Some effects of low pH on the hatchability of eggs of perch, Perca fluviatilis L. Zoon 5, 115–125. CASWeb of Science®Google Scholar Seagar, J., Milne, I., Mallett, M. & Sims, I. (2000). Effects of short-term oxygen depletion on fish. Environmental Toxicology & Chemistry 19, 2937–2942. 10.1002/etc.5620191214 Google Scholar Sumari, O. (1971). Structure of the perch populations of some pounds in Finland. Annales Zoologici Fennici 8, 406–421. Google Scholar Svärdson, G. (1977). Interspecific population dominance in fish communities of Scandinavian lakes. Report of the Institute of Freshwater Research, Drottningholm 55, 144–172. Google Scholar Syväranta, J. & Jones, R. I. (2008). Changes in feeding niche widths of perch and roach following biomanipulation, revealed by stable isotope analysis. Freshwater Biology 53, 425–434. 10.1111/j.1365-2427.2007.01905.x Web of Science®Google Scholar Tammi, J., Appelberg, M., Beier, U., Hesthagen, T., Lappalainen, A. & Rask, M. (2003). Fish status survey of Nordic lakes: effects of acidification, eutrophication and stocking activity on present fish species composition. Ambio 32, 98–105. 10.1579/0044-7447-32.2.98 PubMedWeb of Science®Google Scholar Tolonen, A., Lappalainen, J. & Pulliainen, E. (2003). Seasonal growth and year class strength variations of perch near the northern limits of its distribution range. Journal of Fish Biology 63, 176–186. 10.1046/j.1095-8649.2003.00141.x Web of Science®Google Scholar Citing Literature Volume79, Issue2August 2011Pages 431-448 ReferencesRelatedInformation
Referência(s)