Artigo Revisado por pares

PLGA Carriers for inhalation: Where do We stand, Where are We headed?

2015; Future Science Ltd; Volume: 6; Issue: 10 Linguagem: Inglês

10.4155/tde.15.37

ISSN

2041-6008

Autores

Ivana d’Angelo, Fabiana Quaglia, Francesca Ungaro,

Tópico(s)

Advanced Drug Delivery Systems

Resumo

Therapeutic DeliveryVol. 6, No. 10 CommentaryPLGA carriers for inhalation: where do we stand, where are we headed?Ivana d'Angelo, Fabiana Quaglia & Francesca UngaroIvana d'Angelo Di.S.T.A.Bi.F., Second University of Napoli, Via Vivaldi 43, 81100 Caserta, Italy, Fabiana Quaglia Laboratory of Drug Delivery, Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy & Francesca Ungaro*Author for correspondence: E-mail Address: ungaro@unina.it Laboratory of Drug Delivery, Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, ItalyPublished Online:8 Oct 2015https://doi.org/10.4155/tde.15.37AboutSectionsView ArticleView Full TextPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinkedInRedditEmail View articleKeywords: lung barriersmicroparticlesnanoparticlespoly(lactic-co-glycolic acid)pulmonary deliveryReferences1 Mundargi RC, Babu VR, Rangaswamy V, Patel P, Aminabhavi TM. Nano/micro technologies for delivering macromolecular therapeutics using poly(D,L-lactide-co-glycolide) and its derivatives. J. Control. Release 125, 193–209 (2008).Crossref, Medline, CAS, Google Scholar2 Danhier F, Ansorena E, Silva JM, Coco R, Le BA, Preat V. PLGA-based nanoparticles: an overview of biomedical applications. J. Control. Release 161, 505–522 (2012).Crossref, Medline, CAS, Google Scholar3 Ungaro F, d'Angelo I, Miro A, La Rotonda MI, Quaglia F. Engineered PLGA nano- and micro-carriers for pulmonary delivery: challenges and promises. J. Pharm. Pharmacol. 64, 1217–1235 (2012).Crossref, Medline, CAS, Google Scholar4 Zhou QT, Tang P, Leung SS, Chan JG, Chan HK. Emerging inhalation aerosol devices and strategies: where are we headed? Adv. Drug Deliv. Rev. 75, 3–17 (2014).Crossref, Medline, CAS, Google Scholar5 Hoppentocht M, Hagedoorn P, Frijlink HW, de Boer AH. Technological and practical challenges of dry powder inhalers and formulations. Adv. Drug Deliv. Rev. 75, 18–31 (2014).Crossref, Medline, CAS, Google Scholar6 Hertel SP, Winter G, Friess W. Protein stability in pulmonary drug delivery via nebulization. Adv. Drug Deliv. Rev. doi:10.1016/j.addr.2014.10.003 (2014) (In Press).Medline, Google Scholar7 Patton JS, Brain JD, Davies LA et al. The particle has landed – characterizing the fate of inhaled pharmaceuticals. J. Aerosol. Med. Pulm. Drug Deliv. 23(Suppl. 2), S71–S87 (2010).Crossref, Medline, CAS, Google Scholar8 Ibrahim BM, Park S, Han B, Yeo Y. A strategy to deliver genes to cystic fibrosis lungs: a battle with environment. J. Control. Release 155, 289–295 (2011).Crossref, Medline, CAS, Google Scholar9 d'Angelo I, Conte C, La Rotonda MI, Miro A, Quaglia F, Ungaro F. Improving the efficacy of inhaled drugs in cystic fibrosis: challenges and emerging drug delivery strategies. Adv. Drug Deliv. Rev. 75, 92–111 (2014).Crossref, Medline, Google Scholar10 Edwards DA, Hanes J, Caponetti G et al. Large porous particles for pulmonary drug delivery. Science 276, 1868–1871 (1997).Crossref, Medline, CAS, Google Scholar11 Ungaro F, De Rosa G, Miro A, Quaglia F, La Rotonda MI. Cyclodextrins in the production of large porous particles: development of dry powders for the sustained release of insulin to the lungs. Eur. J. Pharm. Sci. 28, 423–432 (2006).Crossref, Medline, CAS, Google Scholar12 Gupta V, Ahsan F. Influence of PEI as a core modifying agent on PLGA microspheres of PGE(1), a pulmonary selective vasodilator. Int. J. Pharm. 413, 51–62 (2011).Crossref, Medline, CAS, Google Scholar13 Yang Y, Bajaj N, Xu P, Ohn K, Tsifansky MD, Yeo Y. Development of highly porous large PLGA microparticles for pulmonary drug delivery. Biomaterials 30, 1947–1953 (2009).Crossref, Medline, CAS, Google Scholar14 Ungaro F, Giovino C, Coletta C, Sorrentino R, Miro A, Quaglia F. Engineering gas-foamed large porous particles for efficient local delivery of macromolecules to the lung. Eur. J. Pharm. Sci. 41, 60–70 (2010).Crossref, Medline, CAS, Google Scholar15 Ensign LM, Schneider C, Suk JS, Cone R, Hanes J. Mucus penetrating nanoparticles: biophysical tool and method of drug and gene delivery. Adv. Mater. 24, 3887–3894 (2012).Crossref, Medline, CAS, Google Scholar16 Wang YY, Lai SK, So C, Schneider C, Cone R, Hanes J. Mucoadhesive nanoparticles may disrupt the protective human mucus barrier by altering its microstructure. PLoS ONE 6, e21547 (2011).Crossref, Medline, CAS, Google Scholar17 de Souza CC, Daum N, Lehr CM. Carrier interactions with the biological barriers of the lung: advanced in vitro models and challenges for pulmonary drug delivery. Adv. Drug Deliv. Rev. 75, 129–140 (2014).Crossref, Medline, Google Scholar18 d'Angelo I, Conte C, Miro A, Quaglia F, Ungaro F. Pulmonary drug delivery: a role for polymeric nanoparticles? Curr. Top. Med. Chem. 15, 386–400 (2015).Crossref, Medline, Google Scholar19 Muralidharan P, Malapit M, Mallory E, Hayes D Jr, Mansour HM. Inhalable nanoparticulate powders for respiratory delivery. Invited review. Nanomedicine 11(5), 1189–1199 (2015).Crossref, Medline, CAS, Google Scholar20 Tsapis N, Bennett D, Jackson B, Weitz DA, Edwards DA. Trojan particles: large porous carriers of nanoparticles for drug delivery. Proc. Natl Acad. Sci. USA 99, 12001–12005 (2002).Crossref, Medline, CAS, Google Scholar21 Ungaro F, d'Angelo I, Coletta C et al. Dry powders based on PLGA nanoparticles for pulmonary delivery of antibiotics: modulation of encapsulation efficiency, release rate and lung deposition pattern by hydrophilic polymers. J. Control. Release 157, 149–159 (2012).Crossref, Medline, CAS, Google Scholar22 Koushik K, Dhanda DS, Cheruvu NP, Kompella UB. Pulmonary delivery of deslorelin: large-porous PLGA particles and HPbetaCD complexes. Pharm. Res. 21, 1119–1126 (2004).Crossref, Medline, CAS, Google Scholar23 Ungaro F, d'Emmanuele di Villa Bianca R, Giovino C et al. Insulin-loaded PLGA/cyclodextrin large porous particles with improved aerosolization properties: in vivo deposition and hypoglycaemic activity after delivery to rat lungs. J. Control. Release 135, 25–34 (2009).Crossref, Medline, CAS, Google Scholar24 Kim H, Park H, Lee J et al. Highly porous large poly(lactic-co-glycolic acid) microspheres adsorbed with palmityl-acylated exendin-4 as a long-acting inhalation system for treating diabetes. Biomaterials 32, 1685–1693 (2011).Crossref, Medline, CAS, Google Scholar25 Gupta A, Pandya SM, Mohammad I, Agrawal AK, Mohan M, Misra A. Particulate pulmonary delivery systems containing anti-tuberculosis agents. Crit. Rev. Ther. Drug Carrier Syst. 30, 277–291 (2013).Crossref, Medline, CAS, Google Scholar26 Sharma R, Yadav AB, Muttil P, Kajal H, Misra A. Inhalable microparticles modify cytokine secretion by lung macrophages of infected mice. Tuberculosis (Edinb.) 91, 107–110 (2011).Crossref, Medline, CAS, Google Scholar27 Verma RK, Agrawal AK, Singh AK et al. Inhalable microparticles of nitric oxide donors induce phagosome maturation and kill Mycobacterium tuberculosis. Tuberculosis (Edinb.) 93, 412–417 (2013).Crossref, Medline, CAS, Google Scholar28 De Stefano D, Ungaro F, Giovino C, Polimeno A, Quaglia F, Carnuccio R. Sustained inhibition of IL-6 and IL-8 expression by decoy ODN to NF-kappaB delivered through respirable large porous particles in LPS-stimulated cystic fibrosis bronchial cells. J. Gene Med. 13, 200–208 (2011).Crossref, Medline, CAS, Google Scholar29 De Stefano D, Coletta C, d'Emmanuele di Villa Bianca R et al. A decoy oligonucleotide to NF-kappaB delivered through inhalable particles prevents LPS-induced rat airway inflammation. Am. J. Respir. Cell Mol. Biol. 49, 288–295 (2013).Crossref, Medline, CAS, Google Scholar30 Ungaro F, De Stefano D, Giovino C et al. PEI-engineered respirable particles delivering a decoy oligonucleotide to NF-kappaB: inhibiting MUC2 expression in LPS-stimulated airway epithelial cells. PLoS ONE 7, e46457 (2012).Crossref, Medline, CAS, Google Scholar31 Shi X, Li C, Gao S et al. Combination of doxorubicin-based chemotherapy and polyethylenimine/p53 gene therapy for the treatment of lung cancer using porous PLGA microparticles. Colloids Surf. B Biointerfaces 122, 498–504 (2014).Crossref, Medline, CAS, Google Scholar32 Sung JC, Padilla DJ, Garcia-Contreras L et al. Formulation and pharmacokinetics of self-assembled rifampicin nanoparticle systems for pulmonary delivery. Pharm. Res. 26, 1847–1855 (2009).Crossref, Medline, CAS, Google Scholar33 Pulliam B, Sung JC, Edwards DA. Design of nanoparticle-based dry powder pulmonary vaccines. Expert Opin. Drug Deliv. 4, 651–663 (2007).Crossref, Medline, CAS, Google Scholar34 Tomoda K, Ohkoshi T, Hirota K et al. Preparation and properties of inhalable nanocomposite particles for treatment of lung cancer. Colloids Surf. B Biointerfaces 71, 177–182 (2009).Crossref, Medline, CAS, Google Scholar35 Jensen DK, Jensen LB, Koocheki S et al. Design of an inhalable dry powder formulation of DOTAP-modified PLGA nanoparticles loaded with siRNA. J. Control. Release 157, 141–148 (2012).Crossref, Medline, CAS, Google Scholar36 Dailey LA, Jekel N, Fink L et al. Investigation of the proinflammatory potential of biodegradable nanoparticle drug delivery systems in the lung. Toxicol. Appl. Pharmacol. 215, 100–108 (2006).Crossref, Medline, CAS, Google Scholar37 Yoo NY, Youn YS, Oh NM et al. Antioxidant encapsulated porous poly(lactide-co-glycolide) microparticles for developing long acting inhalation system. Colloids Surf. B Biointerfaces 88, 419–424 (2011).Crossref, Medline, CAS, Google ScholarFiguresReferencesRelatedDetailsCited ByAfatinib-loaded inhalable PLGA nanoparticles for localized therapy of non-small cell lung cancer (NSCLC)—development and in-vitro efficacy16 June 2020 | Drug Delivery and Translational Research, Vol. 11, No. 3Inorganic Gold and Polymeric Poly(Lactide-co-glycolide) Nanoparticles as Novel Strategies to Ameliorate the Biological Properties of Antimicrobial PeptidesCurrent Protein & Peptide Science, Vol. 21, No. 4The Potential of Frog Skin Peptides for Anti-Infective Therapies: The Case of Esculentin-1a(1-21)NH2Current Medicinal Chemistry, Vol. 27, No. 9Poly(lactide- co -glycolide) Nanoparticles for Prolonged Therapeutic Efficacy of Esculentin-1a-Derived Antimicrobial Peptides against Pseudomonas aeruginosa Lung Infection: in Vitro and in Vivo Studies23 April 2019 | Biomacromolecules, Vol. 20, No. 5 Vol. 6, No. 10 Follow us on social media for the latest updates Metrics Downloaded 104 times History Published online 8 October 2015 Published in print October 2015 Information© Future Science LtdKeywordslung barriersmicroparticlesnanoparticlespoly(lactic-co-glycolic acid)pulmonary deliveryFinancial & competing interests disclosureThe authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.No writing assistance was utilized in the production of this manuscript.PDF download

Referência(s)
Altmetric
PlumX