Artigo Acesso aberto Revisado por pares

Identification of a Pyridoxine-Derived Small-Molecule Inhibitor Targeting Dengue Virus RNA-Dependent RNA Polymerase

2015; American Society for Microbiology; Volume: 60; Issue: 1 Linguagem: Inglês

10.1128/aac.02203-15

ISSN

1098-6596

Autores

Hongtao Xu, Susan P. Colby-Germinario, Said Hassounah, Peter K. Quashie, Ying-Shan Han, Maureen Oliveira, Brent R. Stranix, Mark A. Wainberg,

Tópico(s)

Insect symbiosis and bacterial influences

Resumo

ABSTRACT The viral RNA-dependent RNA polymerase (RdRp) activity of the dengue virus (DENV) NS5 protein is an attractive target for drug design. Here, we report the identification of a novel class of inhibitor (i.e., an active-site metal ion chelator) that acts against DENV RdRp activity. DENV RdRp utilizes a two-metal-ion mechanism of catalysis; therefore, we constructed a small library of compounds, through mechanism-based drug design, aimed at chelating divalent metal ions in the catalytic site of DENV RdRp. We now describe a pyridoxine-derived small-molecule inhibitor that targets DENV RdRp and show that 5-benzenesulfonylmethyl-3-hydroxy-4-hydroxymethyl-pyridine-2-carboxylic acid hydroxyamide (termed DMB220) inhibited the RdRp activity of DENV serotypes 1 to 4 at low micromolar 50% inhibitory concentrations (IC 50s of 5 to 6.7 μM) in an enzymatic assay. The antiviral activity of DMB220 against DENV infection was also verified in a cell-based assay and showed a 50% effective concentration (EC 50 ) of <3 μM. Enzyme assays proved that DMB220 was competitive with nucleotide incorporation. DMB220 did not inhibit the enzymatic activity of recombinant HIV-1 reverse transcriptase and showed only weak inhibition of HIV-1 integrase strand transfer activity, indicating high specificity for DENV RdRp. S600T substitution in the DENV RdRp, which was previously shown to confer resistance to nucleoside analogue inhibitors (NI), conferred 3-fold hypersusceptibility to DMB220, and enzymatic analyses showed that this hypersusceptibility may arise from the decreased binding/incorporation efficiency of the natural NTP substrate without significantly impacting inhibitor binding. Thus, metal ion chelation at the active site of DENV RdRp represents a viable anti-DENV strategy, and DMB220 is the first of a new class of DENV inhibitor.

Referência(s)