Effect of Ground Patterns Size on FM-Band Cross-Talks between Two Parallel Signal Traces of Printed Circuit Boards for Vehicles
2011; Institute of Electrical Engineers of Japan; Volume: 131; Issue: 10 Linguagem: Inglês
10.1541/ieejfms.131.832
ISSN1347-5533
AutoresMichihira Iida, Tsuyoshi Maeno, Osamu Fujiwara,
Tópico(s)Electromagnetic Compatibility and Measurements
ResumoIt is well known that electromagnetic disturbances in vehicle-mounted radios are mainly caused by conducted noise currents flowing through wiring-harnesses from vehicle-mounted printed circuit boards (PCBs) with common ground patterns containing slits. To suppress the noise currents outflow from PCBs of these kinds, we previously measured noise currents outflow from simple two-layer PCBs having two parallel signal traces and different ground patterns with/without slits to reveal that making slits with open ends on the ground patterns in parallel with the traces can reduce the conducted noise currents. In the present study, with FDTD simulation, we investigated reduction effects of ground patterns size on the FM-band cross-talk noise levels between two parallel signal traces, by using four types of simple PCB models having different ground patterns formed in different numbers but containing the same planar dimension slits parallel to the traces, in addition to two types of PCB models with different ground patterns divided into two parts parallel to the traces. As a result, we found that the cross-talk noise currents for the above six types of PCBs decrease by 6.9-8.5dB compared to the PCB which has a plain ground with no slits. From this study, we got the finding that the contributing factor for the above mentioned cross-talk reduction relies on the reduction of mutual inductance between the two parallel traces. In addition, in case of this study, it is interesting to note that the noise currents outflow from PCBs can rather be suppressed when the size of the return ground of each signal trace is small.
Referência(s)