Artigo Revisado por pares

Effect of change in P50 on exercise tolerance at high altitude: a theoretical study

1982; American Physiological Society; Volume: 53; Issue: 6 Linguagem: Inglês

10.1152/jappl.1982.53.6.1487

ISSN

8750-7587

Autores

Harold Z. Bencowitz, Peter D. Wagner, John B. West,

Tópico(s)

Cardiovascular and exercise physiology

Resumo

Acclimatization to altitude often results in a rightward shift of the O2 dissociation curve (ODC). However, a left-shifted ODC is reported to increase exercise tolerance in humans at medium altitude and increase survival in rats breathing hypoxic gas mixtures. We examined this paradox using a computer model of pulmonary gas exchange. A Bohr integration procedure allowed for alveolar-capillary diffusion. When diffusion equilibration was complete, mixed venous (PVO2) and arterial PO2 fell as O2 consumption (VO2) was increased, but PVO2 approached a plateau. Under these conditions a right-shifted ODC is advantageous (higher PVO2) at all but very high altitudes. However, diffusion limitation of O2 transfer may occur at any altitude if VO2 is increased sufficiently. If this occurs, a left-shifted ODC results in higher calculated VO2max (compared with the standard ODC). Further, diffusion limitation always occurs at a lower VO2 with a right-shifted ODC than with a left-shifted ODC. We conclude that whether a leftward or rightward shift in the ODC is advantageous to gas exchange at altitude depends on the presence or absence of diffusion limitation.

Referência(s)