Artigo Revisado por pares

Slew Control of Prolate Spinners Using Single Magnetorquer

2015; American Institute of Aeronautics and Astronautics; Volume: 39; Issue: 3 Linguagem: Inglês

10.2514/1.g001035

ISSN

1533-3884

Autores

Juntian Si, Yang Gao, Abadi Chanik,

Tópico(s)

Spacecraft Dynamics and Control

Resumo

No AccessEngineering NoteSlew Control of Prolate Spinners Using Single MagnetorquerJuntian Si, Yang Gao and Abadi ChanikJuntian SiUniversity of Surrey, Guildford, England GU2 7XH, United Kingdom*Ph.D. Candidate, Surrey Space Centre, Faculty of Engineering and Physical Sciences; .Search for more papers by this author, Yang GaoUniversity of Surrey, Guildford, England GU2 7XH, United Kingdom†Professor, Surrey Space Centre, Faculty of Engineering and Physical Sciences; .Search for more papers by this author and Abadi ChanikUniversity of Surrey, Guildford, England GU2 7XH, United Kingdom‡Ph.D. Candidate, Surrey Space Centre, Faculty of Engineering and Physical Sciences; .Search for more papers by this authorPublished Online:30 Nov 2015https://doi.org/10.2514/1.G001035SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Raus R., Gao Y. and Watt M., “Review and Analysis of Single-Thruster Attitude Control Algorithms for Spinning Spacecraft,” Proceedings of the International Astronautical Congress, International Astronautical Federation Paper IAC-10-C1-3-7, Prague, Sept. 2010. Google Scholar[2] Raus R., Gao Y., Wu Y. H. and Watt M., “Analysis of State-of-the-Art Single-Thruster Attitude Control Techniques for Spinning Penetrator,” Acta Astronautica, Vol. 38, 2012, pp. 60–78. doi: https://doi.org/10.1016/j.actaastro.2012.02.014 CrossrefGoogle Scholar[3] Wu Y. H., Gao Y. and Raus R., “Tradeoff Analysis of Attitude-Control Slew Algorithms for Prolate Spinner,” Journal of Guidance, Control, and Dynamics, Vol. 35, No. 11, 2012, pp. 1143–1157. doi:https://doi.org/10.2514/1.55619 LinkGoogle Scholar[4] Raus R., Gao Y., Wu Y. H. and Watt M., “Robustness Analyses of Attitude Slew Manoeuvres for Spinning Penetrator Spacecraft,” Proceedings of the 63rd International Astronautical Congress, International Astronautical Federation Paper IAC-12-C1-8-4, Naples, Italy, Oct. 2012. Google Scholar[5] Wu Y. H., Gao Y., Raus R. and Watt M., “Single Thruster Attitude Control Software Simulator for Spinning Spacecraft,” IEEE Aerospace Conference, IEEE Publ., Piscataway, NJ, March 2012, pp. 719–12. doi:https://doi.org/10.1109/AERO.2012.6187256 Google Scholar[6] Gao Y., Phipps A., Taylor M., Crawford I. A., Ball A. J., Wilson L., Parker D., Sweeting M., Curiel A. D. S., Davies P., Baker A., Pike W. T., Smith A. and Gowen R., “Lunar Science with Affordable Small Spacecraft Technologies: MoonLITE and Moonraker,” Planetary and Space Science, Vol. 56, Nos. 3–4, 2008, pp. 368–377. doi:https://doi.org/10.1016/j.pss.2007.11.005 CrossrefGoogle Scholar[7] Wheeler P. C., “Spinning Spacecraft Attitude Control via the Environmental Magnetic Field,” Journal of Spacecraft and Rockets, Vol. 4, No. 12, 1967, pp. 1631–1637. doi:https://doi.org/10.2514/3.29145 LinkGoogle Scholar[8] Kenyon S., Bridges C. P., Liddle D. R., Parsons J., Feltham D., Taylor R., Mellor D., Schofield A. and Linehan R., “STRaND-1: Use of a $500 Smartphone as the Central Avionics of a Nanosatellite,” Proceedings of the 62nd International Astronautical Congress, International Astronautical Federation Paper IAC-11-B4-6B-8-x10937, IAF, Cape Town, South Africa, Oct. 2011. Google Scholar[9] Ergin E. I. and Wheeler P. C., “Magnetic Attitude Control of a Spinning Satellite,” Journal of Spacecraft and Rockets, Vol. 2, No. 6, 1965, pp. 846–850. doi:https://doi.org/10.2514/3.28302 LinkGoogle Scholar[10] Sorensen J. A., “A Magnetic Attitude Control System for an Axisymmetric Spinning Spacecraft,” Journal of Spacecraft and Rockets, Vol. 8, No. 5, 1971, pp. 441–448. doi:https://doi.org/10.2514/3.59677 LinkGoogle Scholar[11] Bollner M., Pietrass A. and Stapf R., “Spin Axis Magnetic Coil Maneuvers of the AMPTE/IRM Spacecraft,” 7th Computational Fluid Dynamics Conference, AIAA Paper 1985-1940, 1985. doi:https://doi.org/10.2514/6.1985-1940 Google Scholar[12] Abdelrahman M. and Park S., “Integrated Attitude Determination and Control System via Magnetic Measurements and Actuation,” Acta Astronautica, Vol. 69, Aug.–Sept. 2011, pp. 168–185. doi:https://doi.org/10.1016/j.actaastro.2011.03.010 CrossrefGoogle Scholar[13] Merrill R. T., McElhinny M. W., McFadden P. L. and Banerjee S. K., The Magnetic Field of the Earth—Paleomagnetism, the Core, and the Deep Mantle, Physics Today, Vol. 50, No. 9, 1996, p. 70. doi:https://doi.org/10.1063/1.881919 Google Scholar[14] “Survey: Magnetic Poles,” British Geological Survey, Keyworth, England, U.K., 2014. http://www.geomag.bgs.ac.uk/education/poles.html [retrieved Sept. 2014]. Google Scholar[15] Wertz J. R., Spacecraft Attitude & Determination Control, Kluwer Academic, Norwell, MA, 1978, Chap. 16. CrossrefGoogle Scholar[16] Martel F., Pal P. and Psiaki M., “Active Magnetic Control System for Gravity Gradient Stabilized Spacecraft,” Proceedings of 2nd Annual AIAA/USU Conference on Small Satellites, Technical Session IV: Subsystems, Logan, UT, 1988, pp. 719–19, http://digitalcommons.usu.edu/smallsat/1988/all1988/19/. Google Scholar[17] Thomson W. T., “Spin Stabilization of Attitude Against Gravity Torque,” Journal of Astronautical Science, Vol. 9, No. 1, 1962, pp. 31–33. Google Scholar Previous article Next article

Referência(s)