Revisão Acesso aberto Revisado por pares

Mechanisms of Long Non-coding RNAs in Mammalian Nervous System Development, Plasticity, Disease, and Evolution

2015; Cell Press; Volume: 88; Issue: 5 Linguagem: Inglês

10.1016/j.neuron.2015.09.045

ISSN

1097-4199

Autores

James Briggs, Ernst J. Wolvetang, John S. Mattick, John L. Rinn, Guy Barry,

Tópico(s)

RNA modifications and cancer

Resumo

Only relatively recently has it become clear that mammalian genomes encode tens of thousands of long non-coding RNAs (lncRNAs). A striking 40% of these are expressed specifically in the brain, where they show precisely regulated temporal and spatial expression patterns. This begs the question, what is the functional role of these many lncRNA transcripts in the brain? Here we canvass a growing number of mechanistic studies that have elucidated central roles for lncRNAs in the regulation of nervous system development and function. We also survey studies indicating that neurological and psychiatric disorders may ensue when these mechanisms break down. Finally, we synthesize these insights with evidence from comparative genomics to argue that lncRNAs may have played important roles in brain evolution, by virtue of their abundant sequence innovation in mammals and plausible mechanistic connections to the adaptive processes that occurred recently in the primate and human lineages. Only relatively recently has it become clear that mammalian genomes encode tens of thousands of long non-coding RNAs (lncRNAs). A striking 40% of these are expressed specifically in the brain, where they show precisely regulated temporal and spatial expression patterns. This begs the question, what is the functional role of these many lncRNA transcripts in the brain? Here we canvass a growing number of mechanistic studies that have elucidated central roles for lncRNAs in the regulation of nervous system development and function. We also survey studies indicating that neurological and psychiatric disorders may ensue when these mechanisms break down. Finally, we synthesize these insights with evidence from comparative genomics to argue that lncRNAs may have played important roles in brain evolution, by virtue of their abundant sequence innovation in mammals and plausible mechanistic connections to the adaptive processes that occurred recently in the primate and human lineages. Advances in genome sequencing technologies during the last decade have enabled an unprecedented scale of transcript discovery. One of the key results has been the finding that non-protein-coding transcripts dominate the transcriptional output of mammalian genomes (Birney et al., 2007Birney E. Stamatoyannopoulos J.A. Dutta A. Guigó R. Gingeras T.R. Margulies E.H. Weng Z. Snyder M. Dermitzakis E.T. Thurman R.E. et al.ENCODE Project ConsortiumNISC Comparative Sequencing ProgramBaylor College of Medicine Human Genome Sequencing CenterWashington University Genome Sequencing CenterBroad InstituteChildren’s Hospital Oakland Research InstituteIdentification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project.Nature. 2007; 447: 799-816Crossref PubMed Scopus (3044) Google Scholar, Carninci et al., 2005Carninci P. Kasukawa T. Katayama S. Gough J. Frith M.C. Maeda N. Oyama R. Ravasi T. Lenhard B. Wells C. et al.FANTOM ConsortiumRIKEN Genome Exploration Research Group and Genome Science Group (Genome Network Project Core Group)The transcriptional landscape of the mammalian genome.Science. 2005; 309: 1559-1563Crossref PubMed Scopus (79) Google Scholar). It is now generally appreciated that at least 80% of the human genome is dynamically transcribed across the developing and adult body (Dunham et al., 2012Dunham I. Kundaje A. Aldred S.F. Collins P.J. Davis C.A. Doyle F. Epstein C.B. Frietze S. Harrow J. Kaul R. et al.ENCODE Project ConsortiumAn integrated encyclopedia of DNA elements in the human genome.Nature. 2012; 489: 57-74Crossref PubMed Scopus (4514) Google Scholar), to produce a wide range of small non-coding RNAs (sncRNAs; 200 bp). Functional studies have elucidated a diversity of microRNA (miRNA)-mediated mechanisms that influence almost every aspect of metazoan biology (reviewed in Bushati and Cohen, 2007Bushati N. Cohen S.M. microRNA functions.Annu. Rev. Cell Dev. Biol. 2007; 23: 175-205Crossref PubMed Scopus (1440) Google Scholar, Esteller, 2011Esteller M. Non-coding RNAs in human disease.Nat. Rev. Genet. 2011; 12: 861-874Crossref PubMed Scopus (1374) Google Scholar). More recently, lncRNAs have begun to receive similar attention from experimental biologists, resulting in the discovery of a variety of lncRNA regulatory mechanisms with similarly pervasive influence. Here we survey these discoveries as they pertain to the development, plasticity, disease, and evolution of the mammalian brain. We emphasize the abundant opportunities for discovery represented by the wealth of as-yet-uncharacterized nervous system lncRNAs. First, we introduce key results describing the spatiotemporal expression dynamics of lncRNAs in the brain, and the evolutionary conservation of their gene loci. The GENCODE (Harrow et al., 2012Harrow J. Frankish A. Gonzalez J.M. Tapanari E. Diekhans M. Kokocinski F. Aken B.L. Barrell D. Zadissa A. Searle S. et al.GENCODE: the reference human genome annotation for The ENCODE Project.Genome Res. 2012; 22: 1760-1774Crossref PubMed Scopus (1027) Google Scholar) and NONCODE (Xie et al., 2014Xie C. Yuan J. Li H. Li M. Zhao G. Bu D. Zhu W. Wu W. Chen R. Zhao Y. NONCODEv4: exploring the world of long non-coding RNA genes.Nucleic Acids Res. 2014; 42: D98-D103Crossref PubMed Scopus (189) Google Scholar) consortia have annotated 10,000–50,000 lncRNA genes in the human genome to date. Many are located in regions historically termed gene deserts, between protein-coding genes, while others overlap protein-coding genes in both antisense and sense orientations. They range from small single-exon loci to large multi-exonic transcripts with several alternative splice forms. Remarkably, 40% (equivalent to 4,000–20,000 lncRNA genes) of these are expressed specifically in the brain (Derrien et al., 2012Derrien T. Johnson R. Bussotti G. Tanzer A. Djebali S. Tilgner H. Guernec G. Martin D. Merkel A. Knowles D.G. et al.The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression.Genome Res. 2012; 22: 1775-1789Crossref PubMed Scopus (1374) Google Scholar). This number is strikingly large given the human genome contains approximately 20,000–25,000 protein-coding genes in total (Harrow et al., 2012Harrow J. Frankish A. Gonzalez J.M. Tapanari E. Diekhans M. Kokocinski F. Aken B.L. Barrell D. Zadissa A. Searle S. et al.GENCODE: the reference human genome annotation for The ENCODE Project.Genome Res. 2012; 22: 1760-1774Crossref PubMed Scopus (1027) Google Scholar) and around 2,500 miRNAs (Kozomara and Griffiths-Jones, 2014Kozomara A. Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data.Nucleic Acids Res. 2014; 42: D68-D73Crossref PubMed Scopus (1353) Google Scholar), with only a subset of these that are specific to the nervous system. It begs the question, what is the functional role (if any) of these many lncRNA transcripts in the brain? Arguing that widespread functional roles may exist for nervous system lncRNAs, their expression is dynamically regulated during development (Aprea et al., 2013Aprea J. Prenninger S. Dori M. Ghosh T. Monasor L.S. Wessendorf E. Zocher S. Massalini S. Alexopoulou D. Lesche M. et al.Transcriptome sequencing during mouse brain development identifies long non-coding RNAs functionally involved in neurogenic commitment.EMBO J. 2013; 32: 3145-3160Crossref PubMed Scopus (53) Google Scholar, Belgard et al., 2011Belgard T.G. Marques A.C. Oliver P.L. Abaan H.O. Sirey T.M. Hoerder-Suabedissen A. García-Moreno F. Molnár Z. Margulies E.H. Ponting C.P. A transcriptomic atlas of mouse neocortical layers.Neuron. 2011; 71: 605-616Abstract Full Text Full Text PDF PubMed Scopus (131) Google Scholar, Lin et al., 2011Lin M. Pedrosa E. Shah A. Hrabovsky A. Maqbool S. Zheng D. Lachman H.M. RNA-Seq of human neurons derived from iPS cells reveals candidate long non-coding RNAs involved in neurogenesis and neuropsychiatric disorders.PLoS ONE. 2011; 6: e23356Crossref PubMed Scopus (0) Google Scholar, Mercer et al., 2010Mercer T.R. Qureshi I.A. Gokhan S. Dinger M.E. Li G. Mattick J.S. Mehler M.F. Long noncoding RNAs in neuronal-glial fate specification and oligodendrocyte lineage maturation.BMC Neurosci. 2010; 11: 14Crossref PubMed Scopus (195) Google Scholar, Wu et al., 2010Wu J.Q. Habegger L. Noisa P. Szekely A. Qiu C. Hutchison S. Raha D. Egholm M. Lin H. Weissman S. et al.Dynamic transcriptomes during neural differentiation of human embryonic stem cells revealed by short, long, and paired-end sequencing.Proc. Natl. Acad. Sci. USA. 2010; 107: 5254-5259Crossref PubMed Scopus (101) Google Scholar) and in response to neuronal activity (Barry et al., 2014Barry G. Briggs J.A. Vanichkina D.P. Poth E.M. Beveridge N.J. Ratnu V.S. Nayler S.P. Nones K. Hu J. Bredy T.W. et al.The long non-coding RNA Gomafu is acutely regulated in response to neuronal activation and involved in schizophrenia-associated alternative splicing.Mol. Psychiatry. 2014; 19: 486-494Crossref PubMed Scopus (112) Google Scholar, Kim et al., 2010bKim T.K. Hemberg M. Gray J.M. Costa A.M. Bear D.M. Wu J. Harmin D.A. Laptewicz M. Barbara-Haley K. Kuersten S. et al.Widespread transcription at neuronal activity-regulated enhancers.Nature. 2010; 465: 182-187Crossref PubMed Scopus (969) Google Scholar, Lipovich et al., 2012Lipovich L. Dachet F. Cai J. Bagla S. Balan K. Jia H. Loeb J.A. Activity-dependent human brain coding/noncoding gene regulatory networks.Genetics. 2012; 192: 1133-1148Crossref PubMed Scopus (0) Google Scholar). It also is often highly restricted to specific brain regions in adult mice, such as the hippocampus or particular cortical domains (Mercer et al., 2008Mercer T.R. Dinger M.E. Sunkin S.M. Mehler M.F. Mattick J.S. Specific expression of long noncoding RNAs in the mouse brain.Proc. Natl. Acad. Sci. USA. 2008; 105: 716-721Crossref PubMed Scopus (581) Google Scholar). In fact, it was recently shown that lncRNAs provide more information about cell type identity during mammalian cortical development than protein-coding genes (Molyneaux et al., 2015Molyneaux B.J. Goff L.A. Brettler A.C. Chen H.H. Brown J.R. Hrvatin S. Rinn J.L. Arlotta P. DeCoN: genome-wide analysis of in vivo transcriptional dynamics during pyramidal neuron fate selection in neocortex.Neuron. 2015; 85: 275-288Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar). These dynamics and region-specific expression patterns are coordinated by cell-type-specific or activity-dependent transcription factors and canonical changes in chromatin state at lncRNA loci (Kim et al., 2010bKim T.K. Hemberg M. Gray J.M. Costa A.M. Bear D.M. Wu J. Harmin D.A. Laptewicz M. Barbara-Haley K. Kuersten S. et al.Widespread transcription at neuronal activity-regulated enhancers.Nature. 2010; 465: 182-187Crossref PubMed Scopus (969) Google Scholar, Ramos et al., 2013Ramos A.D. Diaz A. Nellore A. Delgado R.N. Park K.Y. Gonzales-Roybal G. Oldham M.C. Song J.S. Lim D.A. Integration of genome-wide approaches identifies lncRNAs of adult neural stem cells and their progeny in vivo.Cell Stem Cell. 2013; 12: 616-628Abstract Full Text Full Text PDF PubMed Scopus (104) Google Scholar). While some lncRNAs, such as enhancer RNAs or antisense RNAs (see Box 1 for discussion of lncRNA classes), may have tissue-specific expression as an indirect consequence of some unrelated mechanism, most large intergenic noncoding RNAs (lincRNAs, >7,000 in the human genome) have their own independently regulated promoters that undergo canonical transcription factor binding and chromatin remodeling events independent of any other known functions performed at that locus (Cabili et al., 2011Cabili M.N. Trapnell C. Goff L. Koziol M. Tazon-Vega B. Regev A. Rinn J.L. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses.Genes Dev. 2011; 25: 1915-1927Crossref PubMed Scopus (1167) Google Scholar, Guttman et al., 2009Guttman M. Amit I. Garber M. French C. Lin M.F. Feldser D. Huarte M. Zuk O. Carey B.W. Cassady J.P. et al.Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals.Nature. 2009; 458: 223-227Crossref PubMed Scopus (1807) Google Scholar, Ramos et al., 2013Ramos A.D. Diaz A. Nellore A. Delgado R.N. Park K.Y. Gonzales-Roybal G. Oldham M.C. Song J.S. Lim D.A. Integration of genome-wide approaches identifies lncRNAs of adult neural stem cells and their progeny in vivo.Cell Stem Cell. 2013; 12: 616-628Abstract Full Text Full Text PDF PubMed Scopus (104) Google Scholar). Obviously, regulated expression does not prove a functional role for lncRNAs, but it is consistent with it. The evidence for lncRNA functionality in the nervous system is developed below as the main subject of this review.Box 1Regulatory Mechanisms of lncRNAsSince characterization of the first lncRNAs in 1990 (H19, involved in stem cell differentiation [Brannan et al., 1990Brannan C.I. Dees E.C. Ingram R.S. Tilghman S.M. The product of the H19 gene may function as an RNA.Mol. Cell. Biol. 1990; 10: 28-36Crossref PubMed Google Scholar, Gabory et al., 2010Gabory A. Jammes H. Dandolo L. The H19 locus: role of an imprinted non-coding RNA in growth and development.Bioessays. 2010; 32: 473-480Crossref PubMed Scopus (221) Google Scholar]) and 1991 (Xist, essential for X chromosome inactivation [Brown et al., 1991Brown C.J. Ballabio A. Rupert J.L. Lafreniere R.G. Grompe M. Tonlorenzi R. Willard H.F. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome.Nature. 1991; 349: 38-44Crossref PubMed Google Scholar, Pontier and Gribnau, 2011Pontier D.B. Gribnau J. Xist regulation and function explored.Hum. Genet. 2011; 130: 223-236Crossref PubMed Scopus (63) Google Scholar]), the field has made remarkable progress in determining the mechanisms through which lncRNAs act. Here we summarize some of the key concepts emerging from this fast-moving field to serve as a framework for understanding lncRNA-mediated control of nervous system processes.Modular Scaffolds to Control Protein Complex Formation and LocalizationLncRNA transcripts often contain multiple modular functional domains, each with specific affinities for particular RNAs, DNA loci, or protein species (Engreitz et al., 2014Engreitz J.M. Sirokman K. McDonel P. Shishkin A.A. Surka C. Russell P. Grossman S.R. Chow A.Y. Guttman M. Lander E.S. RNA-RNA interactions enable specific targeting of noncoding RNAs to nascent Pre-mRNAs and chromatin sites.Cell. 2014; 159: 188-199Abstract Full Text Full Text PDF PubMed Scopus (76) Google Scholar, Guttman and Rinn, 2012Guttman M. Rinn J.L. Modular regulatory principles of large non-coding RNAs.Nature. 2012; 482: 339-346Crossref PubMed Scopus (650) Google Scholar, Quinn et al., 2014Quinn J.J. Ilik I.A. Qu K. Georgiev P. Chu C. Akhtar A. Chang H.Y. Revealing long noncoding RNA architecture and functions using domain-specific chromatin isolation by RNA purification.Nat. Biotechnol. 2014; 32: 933-940Crossref PubMed Google Scholar, Tsai et al., 2010Tsai M.-C. Manor O. Wan Y. Mosammaparast N. Wang J.K. Lan F. Shi Y. Segal E. Chang H.Y. Long noncoding RNA as modular scaffold of histone modification complexes.Science. 2010; 329: 689-693Crossref PubMed Scopus (1370) Google Scholar). Both sequence-specific and structural features can specify lncRNA interaction partners (He et al., 2011He S. Liu S. Zhu H. The sequence, structure and evolutionary features of HOTAIR in mammals.BMC Evol. Biol. 2011; 11: 102Crossref PubMed Scopus (0) Google Scholar, Johnsson et al., 2014Johnsson P. Lipovich L. Grandér D. Morris K.V. Evolutionary conservation of long non-coding RNAs; sequence, structure, function.Biochim. Biophys. Acta. 2014; 1840: 1063-1071Crossref PubMed Scopus (113) Google Scholar, Rouskin et al., 2014Rouskin S. Zubradt M. Washietl S. Kellis M. Weissman J.S. Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo.Nature. 2014; 505: 701-705Crossref PubMed Scopus (215) Google Scholar, Smith et al., 2013Smith M.A. Gesell T. Stadler P.F. Mattick J.S. Widespread purifying selection on RNA structure in mammals.Nucleic Acids Res. 2013; 41: 8220-8236Crossref PubMed Scopus (59) Google Scholar, Wan et al., 2014Wan Y. Qu K. Zhang Q.C. Flynn R.A. Manor O. Ouyang Z. Zhang J. Spitale R.C. Snyder M.P. Segal E. Chang H.Y. Landscape and variation of RNA secondary structure across the human transcriptome.Nature. 2014; 505: 706-709Crossref PubMed Scopus (162) Google Scholar). The combination of proteins assembled by a particular lncRNA often determines that transcript’s function. Within the nucleus, lncRNA scaffolds influence the genome-wide binding sites and activity of complexes including: PRC1 (Bonasio et al., 2014Bonasio R. Lecona E. Narendra V. Voigt P. Parisi F. Kluger Y. Reinberg D. Interactions with RNA direct the Polycomb group protein SCML2 to chromatin where it represses target genes.eLife. 2014; 3: e02637Crossref Google Scholar, Yap et al., 2010Yap K.L. Li S. Muñoz-Cabello A.M. Raguz S. Zeng L. Mujtaba S. Gil J. Walsh M.J. Zhou M.M. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a.Mol. Cell. 2010; 38: 662-674Abstract Full Text Full Text PDF PubMed Scopus (659) Google Scholar); PRC2 (Rinn et al., 2007Rinn J.L. Kertesz M. Wang J.K. Squazzo S.L. Xu X. Brugmann S.A. Goodnough L.H. Helms J.A. Farnham P.J. Segal E. Chang H.Y. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs.Cell. 2007; 129: 1311-1323Abstract Full Text Full Text PDF PubMed Scopus (1992) Google Scholar); DNMT1 (Di Ruscio et al., 2013Di Ruscio A. Ebralidze A.K. Benoukraf T. Amabile G. Goff L.A. Terragni J. Figueroa M.E. De Figueiredo Pontes L.L. Alberich-Jorda M. Zhang P. et al.DNMT1-interacting RNAs block gene-specific DNA methylation.Nature. 2013; 503: 371-376Crossref PubMed Scopus (172) Google Scholar); the mediator complex; transcription factors such as CBP, NPAS4, CREB, and SRF; and RNA polymerase II (Kaikkonen et al., 2013Kaikkonen M.U. Spann N.J. Heinz S. Romanoski C.E. Allison K.A. Stender J.D. Chun H.B. Tough D.F. Prinjha R.K. Benner C. Glass C.K. Remodeling of the enhancer landscape during macrophage activation is coupled to enhancer transcription.Mol. Cell. 2013; 51: 310-325Abstract Full Text Full Text PDF PubMed Scopus (196) Google Scholar, Kim et al., 2010bKim T.K. Hemberg M. Gray J.M. Costa A.M. Bear D.M. Wu J. Harmin D.A. Laptewicz M. Barbara-Haley K. Kuersten S. et al.Widespread transcription at neuronal activity-regulated enhancers.Nature. 2010; 465: 182-187Crossref PubMed Scopus (969) Google Scholar, Lai et al., 2013Lai F. Orom U.A. Cesaroni M. Beringer M. Taatjes D.J. Blobel G.A. Shiekhattar R. Activating RNAs associate with Mediator to enhance chromatin architecture and transcription.Nature. 2013; 494: 497-501Crossref PubMed Scopus (317) Google Scholar, Lam et al., 2013Lam M.T. Cho H. Lesch H.P. Gosselin D. Heinz S. Tanaka-Oishi Y. Benner C. Kaikkonen M.U. Kim A.S. Kosaka M. et al.Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription.Nature. 2013; 498: 511-515Crossref PubMed Scopus (205) Google Scholar, Li et al., 2013Li W. Notani D. Ma Q. Tanasa B. Nunez E. Chen A.Y. Merkurjev D. Zhang J. Ohgi K. Song X. et al.Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation.Nature. 2013; 498: 516-520Crossref PubMed Scopus (316) Google Scholar, Melo et al., 2013Melo C.A. Drost J. Wijchers P.J. van de Werken H. de Wit E. Oude Vrielink J.A. Elkon R. Melo S.A. Léveillé N. Kalluri R. et al.eRNAs are required for p53-dependent enhancer activity and gene transcription.Mol. Cell. 2013; 49: 524-535Abstract Full Text Full Text PDF PubMed Scopus (220) Google Scholar, Mousavi et al., 2013Mousavi K. Zare H. Dell’orso S. Grontved L. Gutierrez-Cruz G. Derfoul A. Hager G.L. Sartorelli V. eRNAs promote transcription by establishing chromatin accessibility at defined genomic loci.Mol. Cell. 2013; 51: 606-617Abstract Full Text Full Text PDF PubMed Scopus (148) Google Scholar; also see Batista and Chang, 2013bBatista P.J. Chang H.Y. Long noncoding RNAs: cellular address codes in development and disease.Cell. 2013; 152: 1298-1307Abstract Full Text Full Text PDF PubMed Scopus (530) Google Scholar for other examples). Cytoplasmic lncRNA scaffolds have been demonstrated to influence gene expression by controlling the stability (Kretz et al., 2013Kretz M. Siprashvili Z. Chu C. Webster D.E. Zehnder A. Qu K. Lee C.S. Flockhart R.J. Groff A.F. Chow J. et al.Control of somatic tissue differentiation by the long non-coding RNA TINCR.Nature. 2013; 493: 231-235Crossref PubMed Scopus (295) Google Scholar), degradation (Gong and Maquat, 2011Gong C. Maquat L.E. lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements.Nature. 2011; 470: 284-288Crossref PubMed Scopus (422) Google Scholar), translational activation (Carrieri et al., 2012Carrieri C. Cimatti L. Biagioli M. Beugnet A. Zucchelli S. Fedele S. Pesce E. Ferrer I. Collavin L. Santoro C. et al.Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat.Nature. 2012; 491: 454-457Crossref PubMed Scopus (287) Google Scholar), and translational repression (Yoon et al., 2012Yoon J.H. Abdelmohsen K. Srikantan S. Yang X. Martindale J.L. De S. Huarte M. Zhan M. Becker K.G. Gorospe M. LincRNA-p21 suppresses target mRNA translation.Mol. Cell. 2012; 47: 648-655Abstract Full Text Full Text PDF PubMed Scopus (334) Google Scholar) of mRNAs containing specific recognition motifs, by assembling appropriate protein machineries on target transcripts.Sequestering Protein and RNA (Decoys)LncRNAs can influence gene regulation by acting as decoys, which inactivate transcription factors or miRNAs by binding to them and diverting them from their normal sites of action (Hung et al., 2011Hung T. Wang Y. Lin M.F. Koegel A.K. Kotake Y. Grant G.D. Horlings H.M. Shah N. Umbricht C. Wang P. et al.Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters.Nat. Genet. 2011; 43: 621-629Crossref PubMed Scopus (451) Google Scholar, Johnsson et al., 2013Johnsson P. Ackley A. Vidarsdottir L. Lui W.O. Corcoran M. Grandér D. Morris K.V. A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells.Nat. Struct. Mol. Biol. 2013; 20: 440-446Crossref PubMed Scopus (182) Google Scholar, Sun et al., 2013Sun S. Del Rosario B.C. Szanto A. Ogawa Y. Jeon Y. Lee J.T. Jpx RNA activates Xist by evicting CTCF.Cell. 2013; 153: 1537-1551Abstract Full Text Full Text PDF PubMed Scopus (105) Google Scholar, Wang et al., 2013Wang Y. Xu Z. Jiang J. Xu C. Kang J. Xiao L. Wu M. Xiong J. Guo X. Liu H. Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal.Dev. Cell. 2013; 25: 69-80Abstract Full Text Full Text PDF PubMed Scopus (263) Google Scholar, Willingham et al., 2005Willingham A.T. Orth A.P. Batalov S. Peters E.C. Wen B.G. Aza-Blanc P. Hogenesch J.B. Schultz P.G. A strategy for probing the function of noncoding RNAs finds a repressor of NFAT.Science. 2005; 309: 1570-1573Crossref PubMed Scopus (415) Google Scholar). The lncRNA NEAT1 delays translation of specific mRNAs by sequestering them within nuclear paraspeckles and releasing them for translation upon NEAT1 downregulation (Chen and Carmichael, 2009Chen L.L. Carmichael G.G. Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: functional role of a nuclear noncoding RNA.Mol. Cell. 2009; 35: 467-478Abstract Full Text Full Text PDF PubMed Scopus (277) Google Scholar). Large intergenic spacer (IGS) ncRNAs are transcribed from rDNA repeats and sequester proteins with specific signal motifs within the nucleolus (Audas et al., 2012Audas T.E. Jacob M.D. Lee S. Immobilization of proteins in the nucleolus by ribosomal intergenic spacer noncoding RNA.Mol. Cell. 2012; 45: 147-157Abstract Full Text Full Text PDF PubMed Scopus (87) Google Scholar).Intrinsic Catalytic Functions (Signals)Transcripts such as the CCND1 lncRNAs allosterically modify specific protein targets to activate or deactivate their natural functions via intrinsic catalytic activities (Wang et al., 2008Wang X. Arai S. Song X. Reichart D. Du K. Pascual G. Tempst P. Rosenfeld M.G. Glass C.K. Kurokawa R. Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription.Nature. 2008; 454: 126-130Crossref PubMed Scopus (524) Google Scholar). This mechanism is distinct to scaffolding and decoy functions.Cis- Versus Trans-Acting DistinctionA cis-regulatory mechanism affects genes that are proximal to a given lncRNAs locus. For example, many protein-coding genes have partially overlapping antisense lncRNAs that regulate their expression (Katayama et al., 2005Katayama S. Tomaru Y. Kasukawa T. Waki K. Nakanishi M. Nakamura M. Nishida H. Yap C.C. Suzuki M. Kawai J. et al.RIKEN Genome Exploration Research GroupGenome Science Group (Genome Network Project Core Group)FANTOM ConsortiumAntisense transcription in the mammalian transcriptome.Science. 2005; 309: 1564-1566Crossref PubMed Scopus (971) Google Scholar, Modarresi et al., 2012Modarresi F. Faghihi M.A. Lopez-Toledano M.A. Fatemi R.P. Magistri M. Brothers S.P. van der Brug M.P. Wahlestedt C. Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation.Nat. Biotechnol. 2012; 30: 453-459Crossref PubMed Scopus (217) Google Scholar, Yu et al., 2008Yu W. Gius D. Onyango P. Muldoon-Jacobs K. Karp J. Feinberg A.P. Cui H. Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA.Nature. 2008; 451: 202-206Crossref PubMed Scopus (566) Google Scholar), by direct transcriptional interference (Martens et al., 2004Martens J.A. Laprade L. Winston F. Intergenic transcription is required to repress the Saccharomyces cerevisiae SER3 gene.Nature. 2004; 429: 571-574Crossref PubMed Scopus (354) Google Scholar) or by recruiting epigenetic machineries such as PRC2 (Kaneko et al., 2013Kaneko S. Son J. Shen S.S. Reinberg D. Bonasio R. PRC2 binds active promoters and contacts nascent RNAs in embryonic stem cells.Nat. Struct. Mol. Biol. 2013; 20: 1258-1264Crossref PubMed Scopus (107) Google Scholar) or SET2 and SET3 (van Werven et al., 2012van Werven F.J. Neuert G. Hendrick N. Lardenois A. Buratowski S. van Oudenaarden A. Primig M. Amon A. Transcription of two long noncoding RNAs mediates mating-type control of gametogenesis in budding yeast.Cell. 2012; 150: 1170-1181Abstract Full Text Full Text PDF PubMed Scopus (99) Google Scholar) as nascent transcripts. In contrast, trans-acting lncRNAs bind to and impact the expression of target genes throughout the genome, which are often distant to the lncRNA locus (Chu et al., 2011Chu C. Qu K. Zhong F.L. Artandi S.E. Chang H.Y. Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions.Mol. Cell. 2011; 44: 667-678Abstract Full Text Full Text PDF PubMed Scopus (473) Google Scholar, Johnsson et al., 2013Johnsson P. Ackley A. Vidarsdottir L. Lui W.O. Corcoran M. Grandér D. Morris K.V. A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells.Nat. Struct. Mol. Biol. 2013; 20: 440-446Crossref PubMed Scopus (182) Google Scholar, Vance et al., 2014Vance K.W. Sansom S.N. Lee S. Chalei V. Kong L. Cooper S.E. Oliver P.L. Ponting C.P. The long non-coding RNA Paupar regulates the expression of both local and distal genes.EMBO J. 2014; 33: 296-311Crossref PubMed Scopus (0) Google Scholar).The lncRNAs and Topological Organization of the NucleusThe boundaries between cis- and trans-acting mechanisms are being blurred by new studies that emphasize the interplay between three-dimensional chromatin organization and RNA function. For example, the lncRNA XIST searches for genomic binding sites by spatial proximity (Engreitz et al., 2013Engreitz J.M. Pandya-Jones A. McDonel P. Shishkin A. Sirokman K. Surka C. Kadri S. Xing J. Goren A. Lander E.S. et al.The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome.Science. 2013; 341: 1237973Crossref PubMed Scopus (257) Google Scholar). The lncRNA FIRRE is expressed from the X chromosome and drives co-localization of five trans-chromosomal contacts at its site of transcription to control adipogenesis-associated gene expression patterns (Hacisuleyman et al., 2014Hacisuleyman E. Goff L.A. Trapnell C. Williams A. Henao-Mejia J. Sun L. McClanahan P. Hendrickson D.G. Sauvageau M. Kelley D.R. et al.Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre.Nat. Struct. Mol. Biol. 2014; 21: 198-206Crossref PubMed Scopus (149) Google Scholar). Such mechanisms are not easily classified as cis- or trans-acting by conventional definitions. Super-resolution imaging of lncRNA and protein localization in live cells also is beginning to provide insights into the dynamic features governing lncRNA function within the nucleus (Cerase et al., 2014Cerase A. Smeets D. Tang Y.A. Gdula M. Kraus F. Spivakov M. Moindrot B. Leleu M. Tattermusch A. Demmerle J. et al.Spatial separation of Xist RNA and polycomb proteins revealed by superresolution microscopy.Proc. Natl. Acad. Sci. USA. 2014; 111: 2235-2240Crossref PubMed Scopus (43) Google Scholar), further blurring cis- versus trans-acting distinctions. Some further discussion of principles relevant to this emerging mechanistic paradigm can be found in Batista and Chang, 2013aBatista P.J. Chang H.Y. Cytotopic localization by long noncoding RNAs.Curr. Opin. Cell Biol. 2013; 25: 195-199Crossref PubMed Scopus (0) Google Scholar, Batista and Chang, 2013bBatista P.J. Chang H.Y. Long noncoding RNAs: cellular address codes in development and

Referência(s)
Altmetric
PlumX