Artigo Acesso aberto Revisado por pares

Contrasting Soil Thermal Regimes in the Forest-Tundra Transition Near Nadym, West Siberia, Russia

2015; Wiley; Volume: 28; Issue: 1 Linguagem: Inglês

10.1002/ppp.1882

ISSN

1099-1530

Autores

Г. В. Матышак, O. Yu. Goncharova, Н. Г. Москаленко, Donald A. Walker, Howard E. Epstein, Y. Shur,

Tópico(s)

Geology and Paleoclimatology Research

Resumo

Permafrost and Periglacial ProcessesVolume 28, Issue 1 p. 108-118 Research Article Contrasting Soil Thermal Regimes in the Forest-Tundra Transition Near Nadym, West Siberia, Russia G. V. Matyshak, G. V. Matyshak Lomonosov Moscow State University, Soil Science Department, Moscow, RussiaSearch for more papers by this authorO. Yu. Goncharova, Corresponding Author O. Yu. Goncharova [email protected] Lomonosov Moscow State University, Soil Science Department, Moscow, Russia Correspondence to: O. Yu. Goncharova, Lomonosov Moscow State University, Soil Science Department, Moscow, Russia. E-mail: [email protected]Search for more papers by this authorN. G. Moskalenko, N. G. Moskalenko Earth Cryosphere Institute, Siberian Branch of Russian Academy of Sciences, Tyumen, RussiaSearch for more papers by this authorD. A. Walker, D. A. Walker Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USASearch for more papers by this authorH. E. Epstein, H. E. Epstein Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USASearch for more papers by this authorY. Shur, Y. Shur Department of Civil and Environmental Engineering, University of Alaska Fairbanks, Fairbanks, AK, USASearch for more papers by this author G. V. Matyshak, G. V. Matyshak Lomonosov Moscow State University, Soil Science Department, Moscow, RussiaSearch for more papers by this authorO. Yu. Goncharova, Corresponding Author O. Yu. Goncharova [email protected] Lomonosov Moscow State University, Soil Science Department, Moscow, Russia Correspondence to: O. Yu. Goncharova, Lomonosov Moscow State University, Soil Science Department, Moscow, Russia. E-mail: [email protected]Search for more papers by this authorN. G. Moskalenko, N. G. Moskalenko Earth Cryosphere Institute, Siberian Branch of Russian Academy of Sciences, Tyumen, RussiaSearch for more papers by this authorD. A. Walker, D. A. Walker Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USASearch for more papers by this authorH. E. Epstein, H. E. Epstein Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USASearch for more papers by this authorY. Shur, Y. Shur Department of Civil and Environmental Engineering, University of Alaska Fairbanks, Fairbanks, AK, USASearch for more papers by this author First published: 02 December 2015 https://doi.org/10.1002/ppp.1882Citations: 13Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Permafrost and varying land surface properties greatly complicate modelling of the thermal response of Arctic soils to climate change. The forest-tundra transition near Nadym in west Siberia provides an excellent study area in which to examine the contrasting thermal properties of soils in a forested ecosystem without permafrost and peatlands with permafrost. We investigated the effects of forest shading, snow cover and variable organic soil horizons in three common ecosystems of the forest-tundra transition zone. Based on the year-round temperature profile data, the most informative annual parameters were: (1) the sum of positive average daily temperatures at depths of 10 and 20 cm; (2) the maximum penetration depth of temperatures above 10 °C; and (3) the number of days with temperatures below 0 °C at a depth of 20 cm. The insulative effect of snow cover in winter was at least twice that of the shading and cooling effect of vegetation in summer. In areas with shallow permafrost, the presence of a thick organic horizon, with an extremely low thermal diffusivity, creates a very steep temperature gradient that limits heat penetration to the top of the permafrost in summer. Copyright © 2015 John Wiley & Sons, Ltd. Supporting Information Landscape and soil descriptions of the study sites including sites and soil photographs are provided (Appendix S1). Filename Description ppp1882-sup-0001-Appendix.pdfPDF document, 500.6 KB Supporting info item Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References Bhatt US, Walker DA, Raynolds MK, Comiso JC, Epstein HE, Jia GJ, Gens R, Pinzon JE, Tucker CJ, Tweedie CE, Webber PJ. 2010. Circumpolar Arctic tundra vegetation change is linked to sea-ice decline. Earth Interactions 14: 1–20. DOI:10.1175/2010EI315.1. Burn CR, Smith CAS. 1988. Observations on the “thermal offset” in near-surface mean annual ground temperatures at several sites near Mayo, Yukon Territory, Canada. Arctic 41: 99–104. Callaghan TV, Crawford RMM, Eronen M, Hofgaard A, Payette S, Rees WG, Skre O, Sveinbjörnsson B, Vlassova TK, Werkman BR. 2002. The dynamics of the tundra-taiga boundary: An overview and suggested coordinated and integrated approach to research. Ambio Special Report 12: 3–5. Elmendorf SC, Henry G, Hollister R, Björk R, Boulanger-Lapointe N, Cooper E, Cornelissen J, Day T, Dorrepaal E, Elumeeva T, Gill M, Gould W, Harte J, Hik D, Hofgaard A, Johnson D, Johnstone J, Jónsdóttir I, Jorgenson J, Klanderud K, Klein J, Koh S, Kudo G, Lara M Lévesque E, Magnússon B, May J, Mercado-Díaz J, Michelsen A, Molau U, Myers-Smith I, Oberbauer S, Onipchenko V, Rixen C, Schmidt N, Shaver G, Spasojevic M, þórhallsdóttir E, Tolvanen A, Troxle T, Tweedie C, Villareal S, Wahren C-H, Walker X, Webber P, Welker J, Wip S. 2012. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nature Climate Change 2: 453–457. DOI:10.1038/ncclimate1465. Goncharova OY, Matyshak GV, Bobrik AA, Moskalenko NG. 2014. Carbon dioxide production by northern taiga soils of Western Siberia (Nadym site). Earth Cryosphere 2: 66–71. Goodrich LE. 1982. The influence of snow cover on the ground thermal regime. Canadian Geotechnical Journal 19: 421–432. Guglielmin M, Ellis Evans CJ, Cannone N. 2008. Active layer thermal regime under different vegetation conditions in permafrost areas. A case study at Signy Island (Maritime Antarctica). Geoderma 144: 73–85. DOI:10.1016/j.geoderma.2007.10.010. PM Huang, Y Li, ME Sumner (eds). 2011. Handbook of Soil Sciences: Properties and Processes, Second Edition. CRC Press: New York; 1442 pp. Hinkel KM, Outcalt SI. 1994. Identification of heat transfer processes during soil cooling, freezing, and thawing in Central Alaska. Permafrost and Periglacial Processes 5: 217–235. DOI:10.1002/ppp.3430050403. Hinkel KM, Outcalt SI, Nelson FE. 1993. Near surface summer heat-transfer regimes at adjacent permafrost and non-permafrost sites in Central Alaska. In Proceedings of the Sixth International Conference on Permafrost, Beijing, China, 5–9 July 1993; Henry GHR, Hollister RD (eds). South China University of Technology Press: Beijing; 261–266. Hinzman LD, Bettez N, Bolton WR, Chapin FS, Dyurgerov MB, Fastie CL, Griffith B, Hollister RD, Hope A, Huntington HP, Jensen AM, Jia GJ, Jorgenson T, Kane DL, Klein DA, Kofinas G, Lynch AH, Lloyd AH, McGuire AD, Nelson FE, Oechel WC, Osterkamp TE, Racine CH, Romanovsky VE, Stone RS, Stow DA, Sturm M, Tweedie CE, Vourlitis GL, Walker MD, Walker DA, Webber PJ, Welker JM, Winker KS, Yoshikawa K. 2005. Evidence and implications of recent climate change in northern Alaska and other arctic regions. Climate Change 72: 251–298. DOI:10.1007/s10584-005-5352-2. IUSS Working Group WRB. 2014. World Reference Base for Soil Resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO: Rome. James M, Lewkowicz AG, Smith SL, Miceli CM. 2013. Multi-decadal degradation and persistence of permafrost in the Alaska Highway corridor, northwest Canada. Environmental Research Letters 8: 045013. DOI:10.1088/1748-9326/8/4/045013. MO Jeffries, J Richter-Menge, JE Overland (eds). 2014. Arctic Report Card 2014. http://www.arctic.noaa.gov/reportcard Jorgenson MT, Racine CH, Walters JC, Osterkamp TE. 2001. Permafrost degradation and ecological changes associated with a warming climate in central Alaska. Climatic Change 48(4): 551–579. DOI:10.1023/A:1005667424292. Kade A, Romanovsky VE, Walker DA. 2006. The N-factor of nonsorted circles along a climate gradient in Arctic Alaska. Permafrost and Periglacial Processes 17(4): 279–289. DOI:10.1002/ppp.563. Klene AE, Nelson FE, Shiklomanov NI, Hinkel KM. 2001. The n-factor in natural landscapes: variability of air and soil-surface temperatures, Kuparuk River basin, Alaska. Arctic, Antarctic, and Alpine Research 33(2): 140–148. Klene AE, Nelson FE, Shiklomanov NI, Streletskiy DA. 2008. Interannual variability of winter n-factors in the Kuparuk River basin, Alaska. In Proceedings of the Ninth International Conference on Permafrost, Kane DL, Hinkel KM (eds). University of Alaska Press: Fairbanks; 953–958. Leibman MO, Kizyakov AI. 2007. Cryogenic landslides of the Yamal and Yugorsky Peninsulas. Moscow: Earth Cryosphere Institute SB RAS (in Russian). Lunardini VJ. 1978. Theory of n-factors and correlation of data. In Proceedings, 3rd International Conference on Permafrost, Edmonton, Alberta, July 10–13, 1. National Research Council of Canada: Ottawa; 40–46. Matyshak GV. 2009. Peculiarities of forming soils of the North Western Siberia under cryogenesis. PhD thesis, Lomonosov Moscow State University, Moscow (in Russian). Melnikov ES, Leibman MO, Moskalenko NG, Vasiliev AA. 2004. Active-layer monitoring in the cryolithozone of West Siberia. Polar Geography V 28(4): 267–285. DOI:10.1080/789610206. Meltofte H, Barry T, Berteaux D, Bueltmann H, Christiansen JS, Cook JA, Danie¨ls FJA, Dahlberg A, Friériksson F, Ganter B, Gaston AJ, Gillespie L, Grenoble L, Henry G, Hoberg EP, Hodkinson I, Huntington HP, Ims RA, Josefson AB, Kutz SJ, Kuzmin SA, Laidre K, Lassuy DR, Lewis PN, Lovejoy C, Michel C, Mokievskiy V, Payer D, Reid D, Reist J, Tessler D, Wrona F. 2013. Synthesis: Implications for conservation. In Arctic Biodiversity Assessment Status and Trends in Arctic biodiversity: Conservation of Arctic Flora and Fauna, H. Meltofte (ed). Akureyri: 21–65. Morse PD, Burn CR, Kokelj SV. 2012. Influence of snow on near-surface ground temperatures in upland and alluvial environments of the outer Mackenzie Delta, Northwest Territories. Canadian Journal Earth Sciences 49: 895–913. Moskalenko NG. 1995. Role of vegetation cover in the permafrost zone. Russian Geocryology 1: 58–65 (in Russian). Moskalenko NG. 1999. Anthropogenic vegetation dynamics of permafrost in the cryolithozone plains of Russia. Nauka: Novosibirsk; 280 (in Russian). Outcalt SI, Nelson FE, Hinkel KM. 1990. The zero-curtain effect: heat and mass transfer across an isothermal region in freezing soil. Water Resources Research 26(7): 1509–1516. DOI:10.1029/wr026i007p01509. Pavlov AV, Moskalenko NG. 2002. The thermal regime of soils in the North and Western Siberia. Permafrost and Periglacial Processes 13: 43–51. DOI:10.1002/ppp.409. Ponomareva OE, Shur YL. 2008. Long-Term monitoring of frost heave and thaw settlement in the northern taiga of West Siberia. In Extended Abstracts, Ninth International Conference on Permafrost, Kane DL, Hinkel KM (eds). Institute of Northern Engineering, University of Alaska: Fairbanks; 2: 1439–1444. Raynolds MK, Walker DA, Epstein HE, Pinzon JE, Tucker CJ. 2012. A new estimate of tundra-biome phytomass from trans-Arctic field data and AVHRR NDVI. Remote Sensing Letters 3: 403–411. DOI:10.1080/01431161.2011.609188. Romanovsky VE, Osterkamp TE. 1995. Inter annual variations of the thermal regime of the active layer and near surface permafrost in Northern Alaska. Permafrost and Periglacial Processes 6: 313–335. DOI:10.1002/ppp.3430060404. Romanovsky VE, Smith SL, Christiansen HH, Shiklomanov NI, Streletskiy DA, Drozdov DS, Oberman NG, Kholodov AL, Marchenko SS. 2013. Permafrost. Arctic Report Card. Serreze MC, Francis J. 2006. The Arctic amplification debate. Climate Change 76: 241–264. DOI:10.10007/s10584-005-9017. Shiklomanov NI, Anisimov OA, Zhang T, Marchenko S, Nelson FE, Oelke C. 2007. Comparison of model-produced active layer fields: Results for northern Alaska. Journal of Geophysical Research 112: F02S10. DOI:10.1029/2006JF000571. Smith MW, Riseborough DW. 2002. Climate and the limits of permafrost: a zonal analysis. Permafrost and Periglacial Processes 13(1): 1–15. DOI:10.1002/ppp.410. Street RB, Melnikov PI. 1990. Seasonal snow cover, ice and permafrost. In Climate Change: The IPCC Impacts Assessment, YA Izrael, M Hashimoto, WJ McTegart (eds). Australian Government Publishing Service, Imprimatur Press: Canberra, Australia; 7- 1–7-33. Throop J, Lewkowicz AG, Smith SL. 2012. Climate and ground temperature relations at sites across the continuous and discontinuous permafrost zones, northern Canada. Canadian Journal of Earth Sciences 49: 865–876. Vasilyevskaya VD, Ivanov VV, Bogatyrev LG. 1986. Soils of north Western Siberia. Moscow State University Press: Moscow; 227 (in Russian). Citing Literature Volume28, Issue1January/March 2017Pages 108-118 ReferencesRelatedInformation

Referência(s)