Responses to Food in Lymnaeid Snails
1968; University of Chicago Press; Volume: 41; Issue: 4 Linguagem: Inglês
10.1086/physzool.41.4.30155476
ISSN1937-4267
Autores Tópico(s)Insect Utilization and Effects
ResumoPrevious articleNext article No AccessResponses to Food in Lymnaeid SnailsRichard V. BovbjergRichard V. BovbjergPDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmailPrint SectionsMoreDetailsFiguresReferencesCited by Volume 41, Number 4Oct., 1968 Article DOIhttps://doi.org/10.1086/physzool.41.4.30155476 Views: 15Total views on this site Citations: 57Citations are reported from Crossref Journal History This article was published in Physiological Zoology (1928-1998), which is continued by Physiological and Biochemical Zoology (1999-present). Copyright 1968 University of ChicagoPDF download Crossref reports the following articles citing this article:Carmen C. Ucciferri, Russell C. Wyeth Chemosensory afference in the tentacle nerve of Lymnaea stagnalis, Invertebrate Biology 142, no.44 (Nov 2023).https://doi.org/10.1111/ivb.12414Peiyu Zhang, Casper H. A. van Leeuwen, Dagmar Bogers, Marjolein Poelman, Jun Xu, Elisabeth S. Bakker Ectothermic omnivores increase herbivory in response to rising temperature, Oikos 129, no.77 (Mar 2020): 1028–1039.https://doi.org/10.1111/oik.07082Vladimír Skála, Anthony J. Walker, Petr Horák Snail defence responses to parasite infection: The Lymnaea stagnalis-Trichobilharzia szidati model, Developmental & Comparative Immunology 102 (Jan 2020): 103464.https://doi.org/10.1016/j.dci.2019.103464Russell C. Wyeth Olfactory navigation in aquatic gastropods, The Journal of Experimental Biology 222, no.Suppl 1Suppl 1 (Feb 2019): jeb185843.https://doi.org/10.1242/jeb.185843Peiyu Zhang, Reinier F. van den Berg, Casper H. A. van Leeuwen, Brigitte A. Blonk, Elisabeth S. Bakker, Hans G. Dam Aquatic omnivores shift their trophic position towards increased plant consumption as plant stoichiometry becomes more similar to their body stoichiometry, PLOS ONE 13, no.99 (Sep 2018): e0204116.https://doi.org/10.1371/journal.pone.0204116Peiyu Zhang, Brigitte A. Blonk, Reinier F. van den Berg, Elisabeth S. Bakker The effect of temperature on herbivory by the omnivorous ectotherm snail Lymnaea stagnalis, Hydrobiologia 812, no.11 (Jun 2016): 147–155.https://doi.org/10.1007/s10750-016-2891-7Tsuyoshi Takano, Yasunori Kano Molecular phylogenetic investigations of the relationships of the echinoderm-parasite family Eulimidae within Hypsogastropoda (Mollusca), Molecular Phylogenetics and Evolution 79 (Oct 2014): 258–269.https://doi.org/10.1016/j.ympev.2014.06.021Jana Moelzner, Patrick Fink, Stuart Bearhop The smell of good food: volatile infochemicals as resource quality indicators, Journal of Animal Ecology 83, no.55 (May 2014): 1007–1014.https://doi.org/10.1111/1365-2656.12220Michael Zimmermann, Kyle Luth, Gerald Esch Differences in snail ecology lead to infection pattern variation of Echinostoma spp. larval stages, Acta Parasitologica 59, no.33 (Jan 2014).https://doi.org/10.2478/s11686-014-0275-6 Literature Citations, (Jan 2010): 1022–1194.https://doi.org/10.1016/B978-0-12-374855-3.00027-3Andrew M. Turner, Rebekah R. Turner, Scott R. Ray Competition and intraguild egg predation among freshwater snails: re‐examining the mechanism of interspecific interactions, Oikos 116, no.1111 (Nov 2007): 1895–1903.https://doi.org/10.1111/j.0030-1299.2007.15883.xEmilie Lance, Chrystelle Paty, Myriam Bormans, Luc Brient, Claudia Gérard Interactions between cyanobacteria and gastropods, Aquatic Toxicology 81, no.44 (Mar 2007): 389–396.https://doi.org/10.1016/j.aquatox.2006.12.019Emilie Lance, Luc Brient, Myriam Bormans, Claudia Gérard Interactions between cyanobacteria and Gastropods, Aquatic Toxicology 79, no.22 (Aug 2006): 140–148.https://doi.org/10.1016/j.aquatox.2006.06.004Joël C Désy, Marc Amyot, Bernadette Pinel-Alloul, Peter G.C Campbell Relating cadmium concentrations in three macrophyte-associated freshwater invertebrates to those in macrophytes, water and sediments, Environmental Pollution 120, no.33 (Dec 2002): 759–769.https://doi.org/10.1016/S0269-7491(02)00174-4J.M. Navarro, O.R. Chaparro Grazing–filtration as feeding mechanisms in motile specimens of Crepidula fecunda (Gastropoda: Calyptraeidae), Journal of Experimental Marine Biology and Ecology 270, no.11 (Apr 2002): 111–122.https://doi.org/10.1016/S0022-0981(02)00013-8C. J. H. Elliott, A. J. Susswein Comparative neuroethology of feeding control in molluscs, Journal of Experimental Biology 205, no.77 (Apr 2002): 877–896.https://doi.org/10.1242/jeb.205.7.877A.Don Murphy The neuronal basis of feeding in the snail, Helisoma, with comparisons to selected gastropods, Progress in Neurobiology 63, no.44 (Mar 2001): 383–408.https://doi.org/10.1016/S0301-0082(00)00049-6Kenneth M. Brown MOLLUSCA: GASTROPODA, (Jan 2001): 297–329.https://doi.org/10.1016/B978-012690647-9/50011-9 Stanley I. Dodson , Todd A. Crowl , Barbara L. Peckarsky , Lee B. Kats , Alan P. Covich , and Joseph M. Culp Non-Visual Communication in Freshwater Benthos: An Overview, Journal of the North American Benthological Society 13, no.22 (Nov 2015): 268–282.https://doi.org/10.2307/1467245J. E. Vermaat Periphyton removal by freshwater micrograzers, (Jan 1994): 213–249.https://doi.org/10.1007/978-94-011-2032-6_13Dennis G. Emery Fine structure of olfactory epithelia of gastropod molluscs, Microscopy Research and Technique 22, no.44 (Feb 2005): 307–324.https://doi.org/10.1002/jemt.1070220402Hong Yi, Dennis G. Emery Histology and ultrastructure of the olfactory organ of the freshwater pulmonate Helisoma trivolvis, Cell & Tissue Research 265, no.22 (Aug 1991): 335–344.https://doi.org/10.1007/BF00398081P. W. G. Daldorph, J. D. Thomas Snail cadavers as sources of short-chain carboxylic acids to scavenging freshwater invertebrates, Hydrobiologia 209, no.22 (Feb 1991): 133–140.https://doi.org/10.1007/BF00006925Ferdinando Lombardo, Rita Maramaldo, Bernardo Fratello, Dario Sonetti Sequential analysis of chemoreception in Planorbarius corneus (L.), Comparative Biochemistry and Physiology Part A: Physiology 99, no.44 (Jan 1991): 627–632.https://doi.org/10.1016/0300-9629(91)90141-X L. E. Barnese , R. L. Lowe , and R. D. Hunter Comparative Grazing Efficiency of Pulmonate and Prosobranch Snails, Journal of the North American Benthological Society 9, no.11 (Nov 2015): 35–44.https://doi.org/10.2307/1467932D. W. Imrie, C. R. McCrohan, S. J. Hawkins Feeding behaviour in Littorina littorea: a study of the effects of ingestive conditioning and previous dietary history on food preference and rates of consumption, Hydrobiologia 193, no.11 (Mar 1990): 191–198.https://doi.org/10.1007/BF00028076D. W. Imrie, C. R. McCrohan, S. J. Hawkins Feeding behaviour in Littorina littorea: a study of the effects of ingestive conditioning and previous dietary history on food preference and rates of consumption, (Jan 1990): 191–198.https://doi.org/10.1007/978-94-009-0563-4_15J.D Thomas The comparative ecological biochemistry of sugar chemoreception and transport in freshwater snails and other aquatic organisms, Comparative Biochemistry and Physiology Part A: Physiology 93, no.22 (Jan 1989): 353–374.https://doi.org/10.1016/0300-9629(89)90050-9J.D. Thomas, C. Kowalczyk, B. Somasundaram The biochemical ecology of Biomphalaria glabrata, a snail host of Scistosoma mansoni: Short chain carboxylic and amino acids as phagostimulants, Comparative Biochemistry and Physiology Part A: Physiology 93, no.44 (Jan 1989): 899–911.https://doi.org/10.1016/0300-9629(89)90516-1Mairy Barbosa Loureiro dos Santos, José Rabelo de Freitas, Preference of Biomphalaria tenagophila among macrophytes and their periphytons determined through the degree of attractiveness, Revista do Instituto de Medicina Tropical de São Paulo 30, no.44 (Aug 1988): 264–269.https://doi.org/10.1590/S0036-46651988000400003P. W. G. DALDORPH, J. D. THOMAS The chemical ecology of some British freshwater gastropod molluses: behavioural responses to short chain carboxylic acids and maltose, Freshwater Biology 19, no.22 (May 2006): 167–178.https://doi.org/10.1111/j.1365-2427.1988.tb00339.xM.D. Tuersley, C.R. McCrohan Organization of rhythmic buccal motor output of Lymnaea stagnalis in the absence of food, Behavioral and Neural Biology 48, no.33 (Nov 1987): 408–421.https://doi.org/10.1016/S0163-1047(87)90970-8M.D. Tuersley, C.R. McCrohan Food arousal in the pond snail, Lymnaea stagnalis, Behavioral and Neural Biology 48, no.22 (Sep 1987): 222–236.https://doi.org/10.1016/S0163-1047(87)90780-1Gina M Nelson, Teresa E Audesirk Identification of central neurons innervating peripheral chemoreceptive structures in Lymnaea stagnalis, Comparative Biochemistry and Physiology Part A: Physiology 83, no.11 (Jan 1986): 113–120.https://doi.org/10.1016/0300-9629(86)90097-6 The feeding strategies of juvenile and adult Biomphalaria glabrata (Say) under simulated natural conditions and their relevance to ecological theory and snail control, Proceedings of the Royal Society of London. Series B. Biological Sciences 226, no.12431243 (Jan 1997): 177–209.https://doi.org/10.1098/rspb.1985.0090L. E. Hurd On the importance of carrion to reproduction in an omnivorous estuarine neogastropod, Ilyanassa obsoleta (Say), Oecologia 65, no.44 (Mar 1985): 513–515.https://doi.org/10.1007/BF00379665TERESA AUDESIRK, GERALD AUDESIRK Behavior of Gastropod Molluscs, (Jan 1985): 1–94.https://doi.org/10.1016/B978-0-12-751408-6.50008-4C. R. Mccrohan Initiation of Feeding Motor Output By an Identified Interneurone in the Snail Lymnaea Stagnalis, Journal of Experimental Biology 113, no.11 (Nov 1984): 351–366.https://doi.org/10.1242/jeb.113.1.351C. R. Mccrohan Properties of Ventral Cerebral Neurones Involved in the Feeding System of the Snail, Lymnaea Stagnalis, Journal of Experimental Biology 108, no.11 (Jan 1984): 257–272.https://doi.org/10.1242/jeb.108.1.257ROGER P. CROLL GASTROPOD CHEMORECEPTION, Biological Reviews 58, no.22 (Jan 2008): 293–319.https://doi.org/10.1111/j.1469-185X.1983.tb00391.xALAN J. KOHN Feeding Biology of Gastropods, (Jan 1983): 1–63.https://doi.org/10.1016/B978-0-12-751405-5.50009-9Andrew D. McClellan Movements and Motor Patterns of the Buccal Mass of Pleurobranchaea During Feeding, Regurgitation And Rejection, Journal of Experimental Biology 98, no.11 (Jun 1982): 195–211.https://doi.org/10.1242/jeb.98.1.195Andrew D. McClellan Re-Examination of Presumed Feeding Motor Activity in the Isolated Nervous System of Pleurobranchaea, Journal of Experimental Biology 98, no.11 (Jun 1982): 213–228.https://doi.org/10.1242/jeb.98.1.213R. Douglas Hunter Effects of grazing on the quantity and quality of freshwater Aufwuchs, Hydrobiologia 69, no.33 (Mar 1980): 251–259.https://doi.org/10.1007/BF00046800Gerald Audesirk, Teresa Audesirk Complex mechanoreceptors inTritonia diomedea, Journal of Comparative Physiology ? A 141, no.11 (Jan 1980): 101–109.https://doi.org/10.1007/BF00611883Kenneth M. Brown Effects of experimental manipulations on the life history pattern of Lymnaea stagnalis appressa say (pulmonata: lymnaeidae), Hydrobiologia 65, no.22 (Aug 1979): 165–176.https://doi.org/10.1007/BF00017422Kenneth M. Brown THE ADAPTIVE DEMOGRAPHY OF FOUR FRESHWATER PULMONATE SNAILS, Evolution 33, no.1Part21Part2 (May 2017): 417–432.https://doi.org/10.1111/j.1558-5646.1979.tb04695.xJ. Sauve Warner Choice among food levels by an aquatic grazer (Physa gyrina Say), Behavioral Biology 16, no.33 (Mar 1976): 379–383.https://doi.org/10.1016/S0091-6773(76)91525-XA. J. Butler A shortage of food for the terrestrial snail Helicella virgata in South Australia, Oecologia 25, no.44 (Jan 1976): 349–371.https://doi.org/10.1007/BF00345608David W. Phillips Localization and electrical activity of the distance chemoreceptors that mediate predator avoidance behaviour in Acmaea limatula and Acmaea scutum (gastropoda, prosobranchia), Journal of Experimental Biology 63, no.22 (Oct 1975): 403–412.https://doi.org/10.1242/jeb.63.2.403Richard M. Lee, Myral R. Robbins, Reinhard Palovcik Pleurobranchaea behavior: Food finding and other aspects of feeding, Behavioral Biology 12, no.33 (Nov 1974): 297–315.https://doi.org/10.1016/S0091-6773(74)91489-8Colin R. Townsend The chemoreceptor sites involved in food-finding by the freshwater pulmonate snail, Biomphalaria glabrata (Say), with particular reference to the function of the tentacles, Behavioral Biology 11, no.44 (Aug 1974): 511–523.https://doi.org/10.1016/S0091-6773(74)90830-XC.R. Townsend The food-finding orientation mechanism of Biomphalaria glabrata (Say), Animal Behaviour 21, no.33 (Aug 1973): 544–548.https://doi.org/10.1016/S0003-3472(73)80014-4A. O. D. Willows Learning in Gastropod Mollusks, (Jan 1973): 187–274.https://doi.org/10.1007/978-1-4684-3009-7_5P. Calow The food of Ancylus fluviatilis (M�ll.), a littoral stone-dwelling, herbivore, Oecologia 13, no.22 (Jan 1973): 113–133.https://doi.org/10.1007/BF00345644P.S. Meadows, J.I. Campbell Habitat Selection by Aquatic Invertebrates, (Jan 1972): 271–382.https://doi.org/10.1016/S0065-2881(08)60418-6Mary Crisp Structure and Abundance of Receptors of the Unspecialized External Epithelium of Nassarius Reticulatus [Gastropoda, Prosobranchia], Journal of the Marine Biological Association of the United Kingdom 51, no.44 (May 2009): 865–890.https://doi.org/10.1017/S0025315400018026
Referência(s)