The Water Economy of Salamanders: Evaporative Water Loss
1968; University of Chicago Press; Volume: 41; Issue: 2 Linguagem: Inglês
10.1086/physzool.41.2.30155450
ISSN1937-4267
Autores Tópico(s)Physiological and biochemical adaptations
ResumoPrevious articleNext article No AccessThe Water Economy of Salamanders: Evaporative Water LossTom M. SpightTom M. SpightPDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmailPrint SectionsMoreDetailsFiguresReferencesCited by Volume 41, Number 2Apr., 1968 Article DOIhttps://doi.org/10.1086/physzool.41.2.30155450 Views: 20Total views on this site Citations: 64Citations are reported from Crossref Journal History This article was published in Physiological Zoology (1928-1998), which is continued by Physiological and Biochemical Zoology (1999-present). Copyright 1968 University of ChicagoPDF download Crossref reports the following articles citing this article:Freya E. Rowland, Jacob J. Burkhart Juvenile Salamanders Do Not Exhibit Compensatory Growth Post-metamorphosis in an Experimental Setting, Ichthyology & Herpetology 110, no.22 (Jul 2022).https://doi.org/10.1643/h2021067Sarah T Friedman, Martha M Muñoz The effect of thermally robust ballistic mechanisms on climatic niche in salamanders, Integrative Organismal Biology (May 2022).https://doi.org/10.1093/iob/obac020Arianne F. Messerman, Manuel Leal The contributions of individual traits to survival among terrestrial juvenile pond‐breeding salamanders, Functional Ecology 36, no.33 (Dec 2021): 516–525.https://doi.org/10.1111/1365-2435.13973Benjamin B. Johnson, Jeremy B. Searle, Jed P. Sparks Novel Allometric Estimators Improve Estimation Accuracy of Body Surface Area, Volume, and Surface Area-to-Volume Ratio in Lungless Salamanders (Urodela: Plethodontidae), Herpetologica 77, no.33 (Sep 2021).https://doi.org/10.1655/Herpetologica-D-21-00013.1Marc J. Mazerolle, Mathilde Lapointe St-Pierre, Louis Imbeau, Gilles Joanisse Woodland salamander population structure and body condition under irregular shelterwood systems, Canadian Journal of Forest Research 51, no.99 (Sep 2021): 1281–1291.https://doi.org/10.1139/cjfr-2020-0405Christian A. Perez-Martinez, Manuel Leal Lizards as models to explore the ecological and neuroanatomical correlates of miniaturization, Behaviour 158, no.12-1312-13 (Jul 2021): 1121–1168.https://doi.org/10.1163/1568539X-bja10104Benjamin B. Johnson, Jeremy B. Searle, Jed P. Sparks Genome size influences adaptive plasticity of water loss, but not metabolic rates in lungless salamanders, The Journal of Experimental Biology (Mar 2021): jeb.242196.https://doi.org/10.1242/jeb.242196Mark S. Greener, Elin Verbrugghe, Moira Kelly, Mark Blooi, Wouter Beukema, Stefano Canessa, Salvador Carranza, Siska Croubels, Niels De Troyer, Daniel Fernandez-Giberteau, Peter Goethals, Luc Lens, Zhimin Li, Gwij Stegen, Diederik Strubbe, Robby van Leeuwenberg, Sarah Van Praet, Mireia Vila-Escale, Muriel Vervaeke, Frank Pasmans, An Martel Presence of low virulence chytrid fungi could protect European amphibians from more deadly strains, Nature Communications 11, no.11 (Oct 2020).https://doi.org/10.1038/s41467-020-19241-7Zhimin Li, Elin Verbrugghe, Rok Konstanjšek, Maja Lukač, Frank Pasmans, Ivan Cizelj, An Martel Dampened virulence and limited proliferation of Batrachochytrium salamandrivorans during subclinical infection of the troglobiont olm (Proteus anguinus), Scientific Reports 10, no.11 (Oct 2020).https://doi.org/10.1038/s41598-020-73800-yArianne F. Messerman, Manuel Leal Inter- and intraspecific variation in juvenile metabolism and water loss among five biphasic amphibian species, Oecologia 194, no.33 (Oct 2020): 371–382.https://doi.org/10.1007/s00442-020-04780-zVincent R. Farallo, Martha M. Muñoz, Josef C. Uyeda, Donald B. Miles Scaling between macro‐ to microscale climatic data reveals strong phylogenetic inertia in niche evolution in plethodontid salamanders, Evolution 74, no.55 (Apr 2020): 979–991.https://doi.org/10.1111/evo.13959Erica K. Baken, Lauren E. Mellenthin, Dean C. Adams Macroevolution of desiccation‐related morphology in plethodontid salamanders as inferred from a novel surface area to volume ratio estimation approach, Evolution 74, no.22 (Jan 2020): 476–486.https://doi.org/10.1111/evo.13898Nicholas M. Caruso, Leslie J. Rissler Demographic consequences of climate variation along an elevational gradient for a montane terrestrial salamander, Population Ecology 61, no.22 (Dec 2018): 171–182.https://doi.org/10.1002/1438-390X.1005Julie Charbonnier, Jacquelyn Pearlmutter, James Vonesh, Caitlin Gabor, Zachery Forsburg, Kristine Grayson Cross-Life Stage Effects of Aquatic Larval Density and Terrestrial Moisture on Growth and Corticosterone in the Spotted Salamander, Diversity 10, no.33 (Jul 2018): 68.https://doi.org/10.3390/d10030068A.N. Liford, K.K. Cecala Does riparian disturbance alter stream amphibian antipredator behaviors?, Canadian Journal of Zoology 95, no.22 (Feb 2017): 75–79.https://doi.org/10.1139/cjz-2016-0113Thomas McCarthy, Philippe Masson, Alison Thieme, Peter Leimgruber, Brian Gratwicke The relationship between climate and adult body size in redback salamanders ( Plethodon cinereus ), Geo: Geography and Environment 4, no.11 (Jan 2017): e00031.https://doi.org/10.1002/geo2.31Bradley J. Cosentino, David C. Droney Movement behaviour of woodland salamanders is repeatable and varies with forest age in a fragmented landscape, Animal Behaviour 121 (Nov 2016): 137–146.https://doi.org/10.1016/j.anbehav.2016.08.013Brett R. Scheffers, Cynthia A. Paszkowski Large body size for metamorphic wood frogs in urban stormwater wetlands, Urban Ecosystems 19, no.11 (Aug 2015): 347–359.https://doi.org/10.1007/s11252-015-0495-zMatthew E. Gifford Physiology of Plethodontid Salamanders: A Call for Increased Efforts, Copeia 104, no.11 (Mar 2016): 42–51.https://doi.org/10.1643/OT-14-223Braz Titon, Fernando Ribeiro Gomes, Stefan Lötters Relation between Water Balance and Climatic Variables Associated with the Geographical Distribution of Anurans, PLOS ONE 10, no.1010 (Oct 2015): e0140761.https://doi.org/10.1371/journal.pone.0140761James I. Watling, Lorenzo Braga Desiccation resistance explains amphibian distributions in a fragmented tropical forest landscape, Landscape Ecology 30, no.88 (Apr 2015): 1449–1459.https://doi.org/10.1007/s10980-015-0198-0Grant M. Connette, John A. Crawford, William E. Peterman Climate change and shrinking salamanders: alternative mechanisms for changes in plethodontid salamander body size, Global Change Biology 21, no.88 (Jun 2015): 2834–2843.https://doi.org/10.1111/gcb.12883Jodi J. L. Rowley, Dao T. A. Tran, Greta J. Frankham, Anthony H. Dekker, Duong T. T. Le, Truong Q. Nguyen, Vinh Q. Dau, Huy D. Hoang, Robert Guralnick Undiagnosed Cryptic Diversity in Small, Microendemic Frogs (Leptolalax) from the Central Highlands of Vietnam, PLOS ONE 10, no.55 (May 2015): e0128382.https://doi.org/10.1371/journal.pone.0128382Eric A. Riddell, Michael W. Sears Geographic variation of resistance to water loss within two species of lungless salamanders: implications for activity, Ecosphere 6, no.55 (May 2015): art86.https://doi.org/10.1890/ES14-00360.1Adrianne B. Brand, Amber N.M. Wiewel, Evan H. Campbell Grant Potential reduction in terrestrial salamander ranges associated with Marcellus shale development, Biological Conservation 180 (Dec 2014): 233–240.https://doi.org/10.1016/j.biocon.2014.10.008W. E. Peterman, R. D. Semlitsch Spatial variation in water loss predicts terrestrial salamander distribution and population dynamics, Oecologia 176, no.22 (Aug 2014): 357–369.https://doi.org/10.1007/s00442-014-3041-4Anna C. Peterson, Valerie J. McKenzie, Matthew (Mat) C. Fisher Investigating Differences across Host Species and Scales to Explain the Distribution of the Amphibian Pathogen Batrachochytrium dendrobatidis, PLoS ONE 9, no.99 (Sep 2014): e107441.https://doi.org/10.1371/journal.pone.0107441W.E. Peterman, J.L. Locke, R.D. Semlitsch Spatial and temporal patterns of water loss in heterogeneous landscapes: using plaster models as amphibian analogues, Canadian Journal of Zoology 91, no.33 (Mar 2013): 135–140.https://doi.org/10.1139/cjz-2012-0229J. D. Willson, W. A. Hopkins, C. M. Bergeron, B. D. Todd Making leaps in amphibian ecotoxicology: translating individual-level effects of contaminants to population viability, Ecological Applications 22, no.66 (Sep 2012): 1791–1802.https://doi.org/10.1890/11-0915.1Winsor H. Lowe Climate change is linked to long-term decline in a stream salamander, Biological Conservation 145, no.11 (Jan 2012): 48–53.https://doi.org/10.1016/j.biocon.2011.10.004Bradley J. Cosentino, Robert L. Schooley, Christopher A. Phillips Spatial connectivity moderates the effect of predatory fish on salamander metapopulation dynamics, Ecosphere 2, no.88 (Aug 2011): art95.https://doi.org/10.1890/ES11-00111.1Justin C. Davis, Steven B. Castleberry, John C. Kilgo Influence of coarse woody debris on herpetofaunal communities in upland pine stands of the southeastern Coastal Plain, Forest Ecology and Management 259, no.66 (Mar 2010): 1111–1117.https://doi.org/10.1016/j.foreco.2009.12.024Hartwell H. Welsh, Karen L. Pope, Clara A. Wheeler How reliable are amphibian population metrics? A response to Kroll et al., Biological Conservation 142, no.1111 (Nov 2009): 2797–2801.https://doi.org/10.1016/j.biocon.2009.05.032Brian D. Todd, Thomas M. Luhring, Betsie B. Rothermel, J. Whitfield Gibbons Effects of forest removal on amphibian migrations: implications for habitat and landscape connectivity, Journal of Applied Ecology 46, no.33 (Jun 2009): 554–561.https://doi.org/10.1111/j.1365-2664.2009.01645.xKurtis R. Moseley, W. Mark Ford, John W. Edwards Local and landscape scale factors influencing edge effects on woodland salamanders, Environmental Monitoring and Assessment 151, no.1-41-4 (May 2008): 425–435.https://doi.org/10.1007/s10661-008-0286-6Kurtis R. Moseley, W. Mark Ford, John W. Edwards, Thomas M. Schuler Long-term partial cutting impacts on Desmognathus salamander abundance in West Virginia headwater streams, Forest Ecology and Management 254, no.22 (Jan 2008): 300–307.https://doi.org/10.1016/j.foreco.2007.03.073David E. Scott, Erin D. Casey, Michele F. Donovan, Tracy K. Lynch Amphibian lipid levels at metamorphosis correlate to post-metamorphic terrestrial survival, Oecologia 153, no.33 (May 2007): 521–532.https://doi.org/10.1007/s00442-007-0755-6Brooke Baughman, Brian D. Todd Role of Substrate Cues in Habitat Selection by Recently Metamorphosed Bufo Terrestris and Scaphiopus Holbrookii, Journal of Herpetology 41, no.11 (Mar 2007): 154–157.https://doi.org/10.1670/0022-1511(2007)41[154:ROSCIH]2.0.CO;2RAYMOND D. SEMLITSCH, TRAVIS J. RYAN, KEVIN HAMED, MATT CHATFIELD, BETHANY DREHMAN, NICOLE PEKAREK, MIKE SPATH, ANGIE WATLAND Salamander Abundance along Road Edges and within Abandoned Logging Roads in Appalachian Forests, Conservation Biology 21, no.11 (Feb 2007): 159–167.https://doi.org/10.1111/j.1523-1739.2006.00571.xB.B. Rothermel, R.D. Semlitsch Consequences of forest fragmentation for juvenile survival in spotted ( Ambystoma maculatum ) and marbled ( Ambystoma opacum ) salamanders, Canadian Journal of Zoology 84, no.66 (Jun 2006): 797–807.https://doi.org/10.1139/z06-056Brian D. Todd, Christopher T. Winne Ontogenetic and interspecific variation in timing of movement and responses to climatic factors during migrations by pond-breeding amphibians, Canadian Journal of Zoology 84, no.55 (May 2006): 715–722.https://doi.org/10.1139/z06-054Betsie B. Rothermel, Thomas M. Luhring Burrow Availability and Desiccation Risk of Mole Salamanders (Ambystoma talpoideum) in Harvested versus Unharvested Forest Stands, Journal of Herpetology 39, no.44 (Dec 2005): 619–626.https://doi.org/10.1670/251-04A.1James W. Petranka, Charles K. Smith A functional analysis of streamside habitat use by southern Appalachian salamanders: Implications for riparian forest management, Forest Ecology and Management 210, no.1-31-3 (May 2005): 443–454.https://doi.org/10.1016/j.foreco.2005.02.040Betsie B. Rothermel MIGRATORY SUCCESS OF JUVENILES: A POTENTIAL CONSTRAINT ON CONNECTIVITY FOR POND-BREEDING AMPHIBIANS, Ecological Applications 14, no.55 (Oct 2004): 1535–1546.https://doi.org/10.1890/03-5206Daniel I. Hembree, Larry D. Martin, Stephen T. Hasiotis Amphibian burrows and ephemeral ponds of the Lower Permian Speiser Shale, Kansas: evidence for seasonality in the midcontinent, Palaeogeography, Palaeoclimatology, Palaeoecology 203, no.1-21-2 (Jan 2004): 127–152.https://doi.org/10.1016/S0031-0182(03)00664-3Betsie B. Rothermel, Raymond D. Semlitsch An Experimental Investigation of Landscape Resistance of Forest versus Old-Field Habitats to Emigrating Juvenile Amphibians, Conservation Biology 16, no.55 (Oct 2002): 1324–1332.https://doi.org/10.1046/j.1523-1739.2002.01085.xKristin A. Bakkegard, W. L. Montgomery Activity Patterns of Red Hills Salamanders (Phaeognathus hubrichti) at Their Burrow Entrances, Copeia 2002, no.33 (Aug 2002): 851–856.https://doi.org/10.1643/0045-8511(2002)002[0851:APORHS]2.0.CO;2Mark C. Grover, Henry M. Wilbur ECOLOGY OF ECOTONES: INTERACTIONS BETWEEN SALAMANDERS ON A COMPLEX ENVIRONMENTAL GRADIENT, Ecology 83, no.88 (Aug 2002): 2112–2123.https://doi.org/10.1890/0012-9658(2002)083[2112:EOEIBS]2.0.CO;2Christopher R. Currens, Peter H. Niewiarowski, Howard H. Whiteman, R. E. Gatten Jr Effects of Temperature and Time of Day on the Resting Metabolic Rates of Paedomorphic and Metamorphic Mole Salamanders,Ambystoma talpoideum, Copeia 2002, no.22 (May 2002): 489–495.https://doi.org/10.1643/0045-8511(2002)002[0489:EOTATO]2.0.CO;2Mark C. Grover, S. T. Ross Determinants of Salamander Distributions along Moisture Gradients, Copeia 2000, no.11 (Jan 2000): 156–168.https://doi.org/10.1643/0045-8511(2000)2000[0156:DOSDAM]2.0.CO;2C. BARKER JØRGENSEN 200 YEARS OF AMPHIBIAN WATER ECONOMY: FROM ROBERT TOWNSON TO THE PRESENT, Biological Reviews 72, no.22 (Jan 2007): 153–237.https://doi.org/10.1111/j.1469-185X.1997.tb00013.xA.J. McArthur, J.C. Ousey Heat loss from a wet animal: Changes with time in the heat balance of a physical model representing a newborn homeotherm, Journal of Thermal Biology 19, no.22 (Apr 1994): 81–89.https://doi.org/10.1016/0306-4565(94)90054-X Susan J. Pruett , Donald F. Hoyt , and Daniel F. Stiffier The Allometry of Osmotic and Ionic Regulation in Amphibia with Emphasis on Intraspecific Scaling in Larval Ambystoma tigrinum, Physiological Zoology 64, no.55 (Sep 2015): 1173–1199.https://doi.org/10.1086/physzool.64.5.30156239Lawrence E Licht, James P Bogart Comparative rates of oxygen consumption and water loss in diploid and polyploid salamanders (genus ambystoma), Comparative Biochemistry and Physiology Part A: Physiology 97, no.44 (Jan 1990): 569–572.https://doi.org/10.1016/0300-9629(90)90129-GDIANNE B. SEALE Amphibia, (Jan 1987): 467–552.https://doi.org/10.1016/B978-0-12-544792-8.50012-7Gad Degani Water balance and body fluids of Salamandra salamandra (L.) In their natural habitats in summer and winter, Comparative Biochemistry and Physiology Part A: Physiology 82, no.22 (Jan 1985): 479–482.https://doi.org/10.1016/0300-9629(85)90885-0Dennis B Ralin Ecophysiological adaptation in a diploid-tetraploid complex of treefrogs (Hylidae), Comparative Biochemistry and Physiology Part A: Physiology 68, no.22 (Jan 1981): 175–179.https://doi.org/10.1016/0300-9629(81)90338-8M.R Warburg, Gad Degani Evaporative water loss and uptake in juvenile and adult Salamandra salamandra (L.) (Amphibia: Urodela), Comparative Biochemistry and Physiology Part A: Physiology 62, no.44 (Jan 1979): 1071–1075.https://doi.org/10.1016/0300-9629(79)90051-3 Patricia J. Walters , and Lewis Greenwald Physiological Adaptations of Aquatic Newts (Notophthalmus viridescens) to a Terrestrial Environment, Physiological Zoology 50, no.22 (Sep 2015): 88–98.https://doi.org/10.1086/physzool.50.2.30152549Gary S Thorpe, John E Kontogiannis Evaporative water loss in isolated populations of the coastal side-blotched lizard Uta stansburiana hesperis, Comparative Biochemistry and Physiology Part A: Physiology 57, no.11 (Jan 1977): 133–137.https://doi.org/10.1016/0300-9629(77)90363-2C. Richard Tracy Water and Energy Relations of Terrestrial Amphibians: Insights from Mechanistic Modeling, (Jan 1975): 325–346.https://doi.org/10.1007/978-3-642-87810-7_19Sonia Espina, Mireya Rojas A comparison of the size of the urinary bladder of two south american anurans of different habitat, Comparative Biochemistry and Physiology Part A: Physiology 41, no.11 (Jan 1972): 115–119.https://doi.org/10.1016/0300-9629(72)90039-4M.R. Warburg The water economy of israel amphibians: The urodeles Triturus vittatus (Jenyns) and Salamandra salamandra (L.), Comparative Biochemistry and Physiology Part A: Physiology 40, no.44 (Dec 1971): 1055–1063.https://doi.org/10.1016/0300-9629(71)90294-5R. G. Jaeger Moisture as a factor influencing the distributions of two species of terrestrial salamanders, Oecologia 6, no.33 (Jan 1971): 191–207.https://doi.org/10.1007/BF00344914
Referência(s)