Nonlinear damping models for linear conservative mechanical systems with preserved eigenspaces: a port-Hamiltonian formulation
2015; Elsevier BV; Volume: 48; Issue: 13 Linguagem: Inglês
10.1016/j.ifacol.2015.10.239
ISSN2405-8971
Autores Tópico(s)Model Reduction and Neural Networks
ResumoThis paper introduces linear and nonlinear damping models, which preserve the eigenspaces of conservative linear mechanical problems. After some recalls on the finite dimensional case and on Caughey's linear dampings, an extension to a nonlinear class is introduced. These results are recast in the port-Hamiltonian framework and generalized to infinite dimensional systems. They are applied to an Euler-Bernoulli beam, excited by a distributed force. Simulations yield sounds of xylophone, glockenspiel (etc) and some interpolations for nonlinear dampings.
Referência(s)