Revisão Acesso aberto Revisado por pares

Organoid Models of Human Gastrointestinal Development and Disease

2016; Elsevier BV; Volume: 150; Issue: 5 Linguagem: Inglês

10.1053/j.gastro.2015.12.042

ISSN

1528-0012

Autores

Priya H. Dedhia, Nina Bertaux‐Skeirik, Yana Zavros, Jason R. Spence,

Tópico(s)

Renal and related cancers

Resumo

We have greatly advanced our ability to grow a diverse range of tissue-derived and pluripotent stem cell–derived gastrointestinal (GI) tissues in vitro. These systems, broadly referred to as organoids, have allowed the field to move away from the often nonphysiological, transformed cell lines that have been used for decades in GI research. Organoids are derived from primary tissues and have the capacity for long-term growth. They contain varying levels of cellular complexity and physiological similarity to native organ systems. We review the latest discoveries from studies of tissue-derived and pluripotent stem cell–derived intestinal, gastric, esophageal, liver, and pancreatic organoids. These studies have provided important insights into GI development, tissue homeostasis, and disease and might be used to develop personalized medicines. We have greatly advanced our ability to grow a diverse range of tissue-derived and pluripotent stem cell–derived gastrointestinal (GI) tissues in vitro. These systems, broadly referred to as organoids, have allowed the field to move away from the often nonphysiological, transformed cell lines that have been used for decades in GI research. Organoids are derived from primary tissues and have the capacity for long-term growth. They contain varying levels of cellular complexity and physiological similarity to native organ systems. We review the latest discoveries from studies of tissue-derived and pluripotent stem cell–derived intestinal, gastric, esophageal, liver, and pancreatic organoids. These studies have provided important insights into GI development, tissue homeostasis, and disease and might be used to develop personalized medicines. The human gastrointestinal (GI) tract comprises the foregut, midgut, and hindgut, and each region gives rise to different tissues and organs.1Sinagoga K.L. Wells J.M. Generating human intestinal tissues from pluripotent stem cells to study development and disease.The EMBO Journal. 2015; 34: 1149-1163Crossref PubMed Scopus (0) Google Scholar, 2Spence J.R. Wells J.M. Translational embryology: using embryonic principles to generate pancreatic endocrine cells from embryonic stem cells.Dev Dyn. 2007; 236: 3218-3227Crossref PubMed Scopus (0) Google Scholar, 3Wells J.M. Spence J.R. How to make an intestine.Development. 2014; 141: 752-760Crossref PubMed Scopus (29) Google Scholar, 4Zorn A.M. Wells J.M. Vertebrate endoderm development and organ formation.Annu Rev Cell Dev Biol. 2009; 25: 221-251Crossref PubMed Scopus (253) Google Scholar The foregut endoderm gives rise to the epithelium of the oral cavity, pharynx, esophagus, stomach, liver, pancreas, and proximal duodenum. The midgut and hindgut endoderm give rise to the epithelium of the distal duodenum, jejunum, ileum, colon, rectum, and anal canal, as well as the epithelial lining of the bladder and urethra.4Zorn A.M. Wells J.M. Vertebrate endoderm development and organ formation.Annu Rev Cell Dev Biol. 2009; 25: 221-251Crossref PubMed Scopus (253) Google Scholar, 5Chawengsaksophak K. de Graaff W. Rossant J. et al.Cdx2 is essential for axial elongation in mouse development.Proc Natl Acad Sci U S A. 2004; 101: 7641-7645Crossref PubMed Scopus (0) Google Scholar, 6Dufort D. Schwartz L. Harpal K. et al.The transcription factor HNF3beta is required in visceral endoderm for normal primitive streak morphogenesis.Development. 1998; 125: 3015-3025Crossref PubMed Google Scholar, 7Chalmers A.D. Slack J.M. The Xenopus tadpole gut: fate maps and morphogenetic movements.Development. 2000; 127: 381-392PubMed Google Scholar, 8Kinkel M.D. Eames S.C. Alonzo M.R. et al.Cdx4 is required in the endoderm to localize the pancreas and limit beta-cell number.Development. 2008; 135: 919-929Crossref PubMed Scopus (0) Google Scholar, 9Martinez Barbera J.P. Clements M. Thomas P. et al.The homeobox gene Hex is required in definitive endodermal tissues for normal forebrain, liver and thyroid formation.Development. 2000; 127: 2433-2445Crossref PubMed Google Scholar, 10Tremblay K.D. Zaret K.S. Distinct populations of endoderm cells converge to generate the embryonic liver bud and ventral foregut tissues.Dev Biol. 2005; 280: 87-99Crossref PubMed Scopus (0) Google Scholar, 11Dessimoz J. Opoka R. Kordich J.J. et al.FGF signaling is necessary for establishing gut tube domains along the anterior-posterior axis in vivo.Mech Dev. 2006; 123: 42-55Crossref PubMed Scopus (0) Google Scholar, 12Goessling W. North T.E. Lord A.M. et al.APC mutant zebrafish uncover a changing temporal requirement for wnt signaling in liver development.Dev Biol. 2008; 320: 161-174Crossref PubMed Scopus (109) Google Scholar, 13Haremaki T. Tanaka Y. Hongo I. et al.Integration of multiple signal transducing pathways on Fgf response elements of the Xenopus caudal homologue Xcad3.Development. 2003; 130: 4907-4917Crossref PubMed Scopus (0) Google Scholar, 14Li Y. Rankin S.A. Sinner D. et al.Sfrp5 coordinates foregut specification and morphogenesis by antagonizing both canonical and noncanonical Wnt11 signaling.Genes Dev. 2008; 22: 3050-3063Crossref PubMed Scopus (84) Google Scholar, 15McLin V.A. Rankin S.A. Zorn A.M. Repression of Wnt/beta-catenin signaling in the anterior endoderm is essential for liver and pancreas development.Development. 2007; 134: 2207-2217Crossref PubMed Scopus (188) Google Scholar, 16Tiso N. Filippi A. Pauls S. et al.BMP signalling regulates anteroposterior endoderm patterning in zebrafish.Mech Dev. 2002; 118: 29-37Crossref PubMed Scopus (102) Google Scholar, 17Wells J.M. Melton D.A. Early mouse endoderm is patterned by soluble factors from adjacent germ layers.Development. 2000; 127: 1563-1572PubMed Google Scholar, 18Wills A. Dickinson K. Khokha M. et al.Bmp signaling is necessary and sufficient for ventrolateral endoderm specification in Xenopus.Dev Dyn. 2008; 237: 2177-2186Crossref PubMed Scopus (17) Google Scholar, 19Chen Y. Pan F.C. Brandes N. et al.Retinoic acid signaling is essential for pancreas development and promotes endocrine at the expense of exocrine cell differentiation in Xenopus.Dev Biol. 2004; 271: 144-160Crossref PubMed Scopus (0) Google Scholar, 20Franklin V. Khoo P.L. Bildsoe H. et al.Regionalisation of the endoderm progenitors and morphogenesis of the gut portals of the mouse embryo.Mech Dev. 2008; 125: 587-600Crossref PubMed Scopus (0) Google Scholar, 21Kim B.M. Buchner G. Miletich I. et al.The stomach mesenchymal transcription factor Barx1 specifies gastric epithelial identity through inhibition of transient Wnt signaling.Dev Cell. 2005; 8: 611-622Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar, 22Kumar M. Jordan N. Melton D. et al.Signals from lateral plate mesoderm instruct endoderm toward a pancreatic fate.Dev Biol. 2003; 259: 109-122Crossref PubMed Scopus (161) Google Scholar, 23Stafford D. Prince V.E. Retinoic acid signaling is required for a critical early step in zebrafish pancreatic development.Curr Biol. 2002; 12: 1215-1220Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar, 24Rankin S.A. Kormish J. Kofron M. et al.A gene regulatory network controlling hhex transcription in the anterior endoderm of the organizer.Dev Biol. 2011; 351: 297-310Crossref PubMed Scopus (0) Google Scholar, 25Roberts D.J. Johnson R.L. Burke A.C. et al.Sonic hedgehog is an endodermal signal inducing Bmp-4 and Hox genes during induction and regionalization of the chick hindgut.Development. 1995; 121: 3163-3174Crossref PubMed Google Scholar, 26Bayha E. Jørgensen M.C. Serup P. et al.Retinoic acid signaling organizes endodermal organ specification along the entire antero-posterior axis.PLoS One. 2009; 4: e5845Crossref PubMed Scopus (58) Google Scholar, 27Huang D. Chen S.W. Langston A.W. et al.A conserved retinoic acid responsive element in the murine Hoxb-1 gene is required for expression in the developing gut.Development. 1998; 125: 3235-3246PubMed Google Scholar, 28Dale L. Howes G. Price B.M. et al.Bone morphogenetic protein 4: a ventralizing factor in early Xenopus development.Development. 1992; 115: 573-585Crossref PubMed Google Scholar, 29Grapin-Botton A. Antero-posterior patterning of the vertebrate digestive tract: 40 years after Nicole Le Douarin's PhD thesis.Int J Dev Biol. 2005; 49: 335-347Crossref PubMed Scopus (0) Google Scholar, 30Keenan I.D. Sharrard R.M. Isaacs H.V. FGF signal transduction and the regulation of Cdx gene expression.Dev Biol. 2006; 299: 478-488Crossref PubMed Scopus (0) Google Scholar, 31Lickert H. Kemler R. Functional analysis of cis-regulatory elements controlling initiation and maintenance of early Cdx1 gene expression in the mouse.Dev Dyn. 2002; 225: 216-220Crossref PubMed Scopus (0) Google Scholar, 32Niederreither K. Vermot J. Le Roux I. et al.The regional pattern of retinoic acid synthesis by RALDH2 is essential for the development of posterior pharyngeal arches and the enteric nervous system.Development. 2003; 130: 2525-2534Crossref PubMed Scopus (128) Google Scholar, 33Northrop J.L. Kimelman D. Dorsal-ventral differences in Xcad-3 expression in response to FGF-mediated induction in Xenopus.Dev Biol. 1994; 161: 490-503Crossref PubMed Scopus (0) Google Scholar, 34Seifert A.W. Harfe B.D. Cohn M.J. Cell lineage analysis demonstrates an endodermal origin of the distal urethra and perineum.Dev Biol. 2008; 318: 143-152Crossref PubMed Scopus (83) Google Scholar, 35Wang Z. Dollé P. Cardoso W.V. et al.Retinoic acid regulates morphogenesis and patterning of posterior foregut derivatives.Dev Biol. 2006; 297: 433-445Crossref PubMed Scopus (72) Google Scholar, 36Tam P.P. Khoo P.L. Lewis S.L. et al.Sequential allocation and global pattern of movement of the definitive endoderm in the mouse embryo during gastrulation.Development. 2007; 134: 251-260Crossref PubMed Scopus (0) Google Scholar In vitro organoid cultures are generated from stem or progenitor cells; they have capabilities for long-term growth, cellular diversity, function, and spatial organization specific to the organ they represent, and they have been used to study endoderm-derived GI organs.37Barker N. Huch M. Kujala P. et al.Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro.Cell Stem Cell. 2010; 6: 25-36Abstract Full Text Full Text PDF PubMed Scopus (551) Google Scholar, 38DeWard A.D. Cramer J. Lagasse E. Cellular heterogeneity in the mouse esophagus implicates the presence of a nonquiescent epithelial stem cell population.Cell Rep. 2014; 9: 701-711Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar, 39Gonzalez L.M. Williamson I. Piedrahita J.A. et al.Cell lineage identification and stem cell culture in a porcine model for the study of intestinal epithelial regeneration.PLoS One. 2013; 8: e66465Crossref PubMed Scopus (0) Google Scholar, 40Greggio C. De Franceschi F. Figueiredo-Larsen M. et al.Artificial three-dimensional niches deconstruct pancreas development in vitro.Development. 2013; 140: 4452-4462Crossref PubMed Scopus (49) Google Scholar, 41Huch M. Bonfanti P. Boj S.F. et al.Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis.EMBO J. 2013; 32: 2708-2721Crossref PubMed Scopus (131) Google Scholar, 42Huch M. Dorrell C. Boj S.F. et al.In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration.Nature. 2013; 494: 247-250Crossref PubMed Scopus (341) Google Scholar, 43Huch M. Gehart H. van Boxtel R. et al.Long-term culture of genome-stable bipotent stem cells from adult human liver.Cell. 2015; 160: 299-312Abstract Full Text Full Text PDF PubMed Scopus (161) Google Scholar, 44Jung P. Sato T. Merlos-Suárez A. et al.Isolation and in vitro expansion of human colonic stem cells.Nat Med. 2011; 17: 1225-1227Crossref PubMed Scopus (230) Google Scholar, 45Kalabis J. Wong G.S. Vega M.E. et al.Isolation and characterization of mouse and human esophageal epithelial cells in 3D organotypic culture.Nat Protoc. 2012; 7: 235-246Crossref PubMed Google Scholar, 46Katano T. Ootani A. Mizoshita T. et al.Establishment of a long-term three-dimensional primary culture of mouse glandular stomach epithelial cells within the stem cell niche.Biochem Biophys Res Commun. 2013; 432: 558-563Crossref PubMed Scopus (14) Google Scholar, 47McCracken K.W. Catá E.M. Crawford C.M. et al.Modelling human development and disease in pluripotent stem-cell-derived gastric organoids.Nature. 2014; 516: 400-404Crossref PubMed Scopus (158) Google Scholar, 48Ootani A. Li X. Sangiorgi E. et al.Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche.Nat Med. 2009; 15: 701-706Crossref PubMed Scopus (269) Google Scholar, 49Sato T. Vries R.G. Snippert H.J. et al.Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche.Nature. 2009; 459: 262-265Crossref PubMed Scopus (1411) Google Scholar, 50Spence J.R. Mayhew C.N. Rankin S.A. et al.Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro.Nature. 2011; 470: 105-109Crossref PubMed Scopus (425) Google Scholar, 51Stange D.E. Koo B.K. Huch M. et al.Differentiated Troy+ chief cells act as reserve stem cells to generate all lineages of the stomach epithelium.Cell. 2013; 155: 357-368Abstract Full Text Full Text PDF PubMed Scopus (142) Google Scholar, 52Takebe T. Sekine K. Enomura M. et al.Vascularized and functional human liver from an iPSC-derived organ bud transplant.Nature. 2013; 499: 481-484Crossref PubMed Scopus (454) Google Scholar, 53Tham D.M. Whitin J.C. Kim K.K. et al.Expression of extracellular glutathione peroxidase in human and mouse gastrointestinal tract.Am J Physiol. 1998; 275: G1463-G1471PubMed Google Scholar, 54Yui S. Nakamura T. Sato T. et al.Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5(+) stem cell.Nat Med. 2012; 18: 618-623Crossref PubMed Scopus (0) Google Scholar Although they were initially developed as a way to culture primary mouse GI tissues, organoid technologies now enable the growth of diverse primary human tissues in vitro.43Huch M. Gehart H. van Boxtel R. et al.Long-term culture of genome-stable bipotent stem cells from adult human liver.Cell. 2015; 160: 299-312Abstract Full Text Full Text PDF PubMed Scopus (161) Google Scholar, 44Jung P. Sato T. Merlos-Suárez A. et al.Isolation and in vitro expansion of human colonic stem cells.Nat Med. 2011; 17: 1225-1227Crossref PubMed Scopus (230) Google Scholar, 47McCracken K.W. Catá E.M. Crawford C.M. et al.Modelling human development and disease in pluripotent stem-cell-derived gastric organoids.Nature. 2014; 516: 400-404Crossref PubMed Scopus (158) Google Scholar, 50Spence J.R. Mayhew C.N. Rankin S.A. et al.Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro.Nature. 2011; 470: 105-109Crossref PubMed Scopus (425) Google Scholar, 52Takebe T. Sekine K. Enomura M. et al.Vascularized and functional human liver from an iPSC-derived organ bud transplant.Nature. 2013; 499: 481-484Crossref PubMed Scopus (454) Google Scholar, 55Lahar N. Lei N.Y. Wang J. et al.Intestinal subepithelial myofibroblasts support in vitro and in vivo growth of human small intestinal epithelium.PLoS One. 2011; 6: e26898Crossref PubMed Scopus (62) Google Scholar, 56Boj S.F. Hwang C.I. Baker L.A. et al.Organoid models of human and mouse ductal pancreatic cancer.Cell. 2015; 160: 324-338Abstract Full Text Full Text PDF PubMed Scopus (182) Google Scholar, 57Fordham R.P. Yui S. Hannan N.R. et al.Transplantation of expanded fetal intestinal progenitors contributes to colon regeneration after injury.Cell Stem Cell. 2013; 13: 734-744Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar, 58Ogawa M. Ogawa S. Bear C.E. et al.Directed differentiation of cholangiocytes from human pluripotent stem cells.Nat Biotechnol. 2015; 33: 853-861Crossref PubMed Scopus (0) Google Scholar, 59Sampaziotis F. Cardoso de Brito M. Madrigal P. et al.Cholangiocytes derived from human induced pluripotent stem cells for disease modeling and drug validation.Nat Biotechnol. 2015; 33: 845-852Crossref PubMed Scopus (40) Google Scholar, 60Sato T. Stange D.E. Ferrante M. et al.Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium.Gastroenterology. 2011; 141: 1762-1772Abstract Full Text Full Text PDF PubMed Scopus (469) Google Scholar Before the development of human GI organoids, the GI tract was modeled using cell lines and explanted tissue, both of which have significant limitations (reviewed by Pageot et al61Pageot L.P. Perreault N. Basora N. et al.Human cell models to study small intestinal functions: recapitulation of the crypt-villus axis.Microsc Res Tech. 2000; 49: 394-406Crossref PubMed Google Scholar). Cell lines, for example, are often derived from malignant specimens or are immortalized by viral infection, cell fusion, or introduction of oncogenes, which limit their use in developmental, physiological, and regenerative studies.62Paul E.C. Hochman J. Quaroni A. Conditionally immortalized intestinal epithelial cells: novel approach for study of differentiated enterocytes.Am J Physiol. 1993; 265: C266-C278PubMed Google Scholar, 63Sambuy Y. De Angelis I. Ranaldi G. et al.The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics.Cell Biol Toxicol. 2005; 21: 1-26Crossref PubMed Scopus (503) Google Scholar, 64Rousset M. Chantret I. Darmoul D. et al.Reversible forskolin-induced impairment of sucrase-isomaltase mRNA levels, biosynthesis, and transport to the brush border membrane in Caco-2 cells.J Cell Physiol. 1989; 141: 627-635Crossref PubMed Scopus (0) Google Scholar, 65Pinto M. Robin-Leon S. Appay M.D. et al.Enterocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture.Biol Cell. 1983; 47: 323-330Google Scholar, 66Menard D. Beaulieu J.F. Human intestinal brush border membrane hydrolases.in: Bkaily G. Membrane physiopathology. Kluwer, Norwell, MA1994: 319-341Crossref Google Scholar, 67Zweibaum A. Chantret I. Human colon carcinoma cell lines as in vitro models for the study of intestinal cell differentiation.in: Smith M.W. Sepulveda F.V. Adaptation and development of gastrointestinal function. Manchester University Press, Manchester, England1989: 103-112Google Scholar Explant cultures, which have organotypic properties such as complex 3-dimensional (3D) architecture and cellular heterogeneity, have important roles in studies of development and physiology but are limited by their short-term nature.53Tham D.M. Whitin J.C. Kim K.K. et al.Expression of extracellular glutathione peroxidase in human and mouse gastrointestinal tract.Am J Physiol. 1998; 275: G1463-G1471PubMed Google Scholar, 68Evans G.S. Flint N. Somers A.S. et al.The development of a method for the preparation of rat intestinal epithelial cell primary cultures.J Cell Sci. 1992; 101: 219-231Crossref PubMed Google Scholar, 69Fukamachi H. Proliferation and differentiation of fetal rat intestinal epithelial cells in primary serum-free culture.J Cell Sci. 1992; 103: 511-519PubMed Google Scholar, 70Aaltonen J. Björses P. Sandkuijl L. et al.An autosomal locus causing autoimmune disease: autoimmune polyglandular disease type I assigned to chromosome 21.Nat Genet. 1994; 8: 83-87Crossref PubMed Scopus (0) Google Scholar, 71Randall K.J. Turton J. Foster J.R. Explant culture of gastrointestinal tissue: a review of methods and applications.Cell Biol Toxicol. 2011; 27: 267-284Crossref PubMed Scopus (24) Google Scholar, 72Fletcher G. Jones G.E. Patient R. et al.A role for GATA factors in Xenopus gastrulation movements.Mech Dev. 2006; 123: 730-745Crossref PubMed Scopus (0) Google Scholar, 73Browning T.H. Trier J.S. Organ culture of mucosal biopsies of human small intestine.J Clin Invest. 1969; 48: 1423-1432Crossref PubMed Google Scholar, 74Danielsen E.M. Biosynthesis of intestinal microvillar proteins. Pulse-chase labelling studies on aminopeptidase N and sucrase-isomaltase.Biochem J. 1982; 204: 639-645Crossref PubMed Google Scholar, 75Montgomery R.K. Zinman H.M. Smith B.T. Organotypic differentiation of trypsin-dissociated fetal rat intestine.Dev Biol. 1983; 100: 181-189Crossref PubMed Scopus (0) Google Scholar Recent advances in maintaining GI tissues in long-term in vitro cultures have allowed researchers to overcome many of these barriers, invigorating basic and translational research.37Barker N. Huch M. Kujala P. et al.Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro.Cell Stem Cell. 2010; 6: 25-36Abstract Full Text Full Text PDF PubMed Scopus (551) Google Scholar, 38DeWard A.D. Cramer J. Lagasse E. Cellular heterogeneity in the mouse esophagus implicates the presence of a nonquiescent epithelial stem cell population.Cell Rep. 2014; 9: 701-711Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar, 39Gonzalez L.M. Williamson I. Piedrahita J.A. et al.Cell lineage identification and stem cell culture in a porcine model for the study of intestinal epithelial regeneration.PLoS One. 2013; 8: e66465Crossref PubMed Scopus (0) Google Scholar, 40Greggio C. De Franceschi F. Figueiredo-Larsen M. et al.Artificial three-dimensional niches deconstruct pancreas development in vitro.Development. 2013; 140: 4452-4462Crossref PubMed Scopus (49) Google Scholar, 41Huch M. Bonfanti P. Boj S.F. et al.Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis.EMBO J. 2013; 32: 2708-2721Crossref PubMed Scopus (131) Google Scholar, 42Huch M. Dorrell C. Boj S.F. et al.In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration.Nature. 2013; 494: 247-250Crossref PubMed Scopus (341) Google Scholar, 43Huch M. Gehart H. van Boxtel R. et al.Long-term culture of genome-stable bipotent stem cells from adult human liver.Cell. 2015; 160: 299-312Abstract Full Text Full Text PDF PubMed Scopus (161) Google Scholar, 44Jung P. Sato T. Merlos-Suárez A. et al.Isolation and in vitro expansion of human colonic stem cells.Nat Med. 2011; 17: 1225-1227Crossref PubMed Scopus (230) Google Scholar, 45Kalabis J. Wong G.S. Vega M.E. et al.Isolation and characterization of mouse and human esophageal epithelial cells in 3D organotypic culture.Nat Protoc. 2012; 7: 235-246Crossref PubMed Google Scholar, 46Katano T. Ootani A. Mizoshita T. et al.Establishment of a long-term three-dimensional primary culture of mouse glandular stomach epithelial cells within the stem cell niche.Biochem Biophys Res Commun. 2013; 432: 558-563Crossref PubMed Scopus (14) Google Scholar, 47McCracken K.W. Catá E.M. Crawford C.M. et al.Modelling human development and disease in pluripotent stem-cell-derived gastric organoids.Nature. 2014; 516: 400-404Crossref PubMed Scopus (158) Google Scholar, 48Ootani A. Li X. Sangiorgi E. et al.Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche.Nat Med. 2009; 15: 701-706Crossref PubMed Scopus (269) Google Scholar, 49Sato T. Vries R.G. Snippert H.J. et al.Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche.Nature. 2009; 459: 262-265Crossref PubMed Scopus (1411) Google Scholar, 50Spence J.R. Mayhew C.N. Rankin S.A. et al.Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro.Nature. 2011; 470: 105-109Crossref PubMed Scopus (425) Google Scholar, 51Stange D.E. Koo B.K. Huch M. et al.Differentiated Troy+ chief cells act as reserve stem cells to generate all lineages of the stomach epithelium.Cell. 2013; 155: 357-368Abstract Full Text Full Text PDF PubMed Scopus (142) Google Scholar, 52Takebe T. Sekine K. Enomura M. et al.Vascularized and functional human liver from an iPSC-derived organ bud transplant.Nature. 2013; 499: 481-484Crossref PubMed Scopus (454) Google Scholar, 54Yui S. Nakamura T. Sato T. et al.Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5(+) stem cell.Nat Med. 2012; 18: 618-623Crossref PubMed Scopus (0) Google Scholar For example, long-term organoid cultures have been used to examine the stem cell niche, cellular differentiation, interactions between cells, and physiological functions.37Barker N. Huch M. Kujala P. et al.Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro.Cell Stem Cell. 2010; 6: 25-36Abstract Full Text Full Text PDF PubMed Scopus (551) Google Scholar, 38DeWard A.D. Cramer J. Lagasse E. Cellular heterogeneity in the mouse esophagus implicates the presence of a nonquiescent epithelial stem cell population.Cell Rep. 2014; 9: 701-711Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar, 40Greggio C. De Franceschi F. Figueiredo-Larsen M. et al.Artificial three-dimensional niches deconstruct pancreas development in vitro.Development. 2013; 140: 4452-4462Crossref PubMed Scopus (49) Google Scholar, 41Huch M. Bonfanti P. Boj S.F. et al.Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis.EMBO J. 2013; 32: 2708-2721Crossref PubMed Scopus (131) Google Scholar, 42Huch M. Dorrell C. Boj S.F. et al.In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration.Nature. 2013; 494: 247-250Crossref PubMed Scopus (341) Google Scholar, 44Jung P. Sato T. Merlos-Suárez A. et al.Isolation and in vitro expansion of human colonic stem cells.Nat Med. 2011; 17: 1225-1227Crossref PubMed Scopus (230) Google Scholar, 46Katano T. Ootani A. Mizoshita T. et al.Establishment of a long-term three-dimensional primary culture of mouse glandular stomach epithelial cells within the stem cell niche.Biochem Biophys Res Commun. 2013; 432: 558-563Crossref PubMed Scopus (14) Google Scholar, 47McCracken K.W. Catá E.M. Crawford C.M. et al.Modelling human development and disease in pluripotent stem-cell-derived gastric organoids.Nature. 2014; 516: 400-404Crossref PubMed Scopus (158) Google Scholar, 48Ootani A. Li X. Sangiorgi E. et al.Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche.Nat Med. 2009; 15: 701-706Crossref PubMed Scopus (269) Google Scholar, 49Sato T. Vries R.G. Snippert H.J. et al.Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche.Nature. 2009; 459: 262-265Crossref PubMed Scopus (1411) Google Scholar, 50Spence J.R. Mayhew C.N. Rankin S.A. et al.Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro.Nature. 2011; 470: 105-109Crossref PubMed Scopus (425) Google Scholar, 51Stange D.E. Koo B.K. Huch M. et al.Differentiated Troy+ chief cells act as reserve stem cells to generate all lineages of the stomach epithelium.Cell. 2013; 155: 357-368Abstract Full Text Full Text PDF PubMed Scopus (142) Google Scholar, 54Yui S. Nakamura T. Sato T. et al.Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5(+) stem cell.Nat Med. 2012; 18: 618-623Crossref PubMed Scopus (0) Google Scholar, 57Fordham R.P. Yui S. Hannan N.R. et al.Transplantation of expanded fetal intestinal progenitors contributes to colon regeneration after injury.Cell Stem Cell. 2013; 13: 734-744Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar, 58Ogawa M. Ogawa S. Bear C.E. et al.Directed differentiation of cholangiocytes from human pluripotent stem cells.Nat Biotechnol. 2015; 33: 853-861Crossref PubMed Scopus (0) Google Scholar, 60Sato T. Stange D.E. Ferrante M. et al.Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium.Gastroenterology. 2011; 141: 1762-1772Abstract Full Text Full Text PDF PubMed Scopus (469) Google Scholar, 76de Lau W. Barker N. Low T.Y. et al.Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling.Nature. 2011; 476: 293-297Crossref PubMed Scopus (484) Google Scholar, 77Du A. McCracken K.W. Walp E.R. et al.Arx is required for normal enteroendocrine cell development in mice and humans.Dev Biol. 2012; 365: 175-188Crossref PubMed Scopus (27) Google Scholar, 78Dekkers J.F. Wiegerinck C.L. de Jonge H.R. et al.A functional CFTR assay using primary cystic fibrosis intestinal organoids.Nat Med. 2013; 19: 939-945Crossref PubMed Scopus (147) Google Scholar, 79Mizutani T. Nakamura T. Morikawa R. et al.Real-time analysis of P-glycoprotein-mediated drug transport across primary intestinal epithelium three-dimensionally cultured in vitro.Biochem Biophys Res Commun. 2012; 419: 238-243Crossref PubMed Scopus (0) Google Scholar, 80Forster R. Chiba K. Schaeffer L. et al.Human intestinal tissue with adult stem cell properties derived from pluripotent stem cells.Stem Cell Reports. 2014; 2: 838-852Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar, 81Mustata R.C. Vasile G. Fernandez-Vallone V. et al.Identification of Lgr5-independent spheroid-generating progenitors of the mouse fetal intestinal epithelium.Cell Rep. 2013; 5: 421-432Abstract Full Text Full Text PDF PubMed Scopus (36) Google Scholar, 82Finkbeiner S.R. Hill D.R. Altheim C.H. et al.Transcriptome-wide analysis reveals hallmarks of human intestine development and maturation in vitro and in vivo.Stem Cell Reports. 2015 Jun 3; ([Epub ahead of print])Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar, 83Grun D. Lyubimova A. Kester L. et al.Single-cell messenger RNA sequencing reveals rare intestinal cell types.Nature. 2015; 525: 251-255Crossref PubMed Scopus (138) Google Scholar, 84Schumacher M.A. Feng R. Aihara E. et al.Helicobacter pylori-induced Sonic Hedgehog expression is regulated by NFkappaB pathway activation: the use of a novel in vitro model to study epithelial response to infection.Helicobacter. 2015; 20: 19-28Crossref PubMed Scopus

Referência(s)