Artigo Acesso aberto Revisado por pares

Computational Characterization of Redox Non-Innocence in Cobalt-Bis(Diaryldithiolene)-Catalyzed Proton Reduction

2015; American Chemical Society; Volume: 12; Issue: 1 Linguagem: Inglês

10.1021/acs.jctc.5b00968

ISSN

1549-9626

Autores

Julien A. Panetier, Christopher S. Letko, T. Don Tilley, Martin Head‐Gordon,

Tópico(s)

Organic and Molecular Conductors Research

Resumo

Localized orbital bonding analysis (LOBA) was employed to probe the oxidation state in cobalt-bis(diaryldithiolene)-catalyzed proton reduction in nonaqueous media. LOBA calculations provide both the oxidation state and chemically intuitive views of bonding in cobalt-bis(diaryldithiolene) species and therefore allow characterization of the role of the redox non-innocent dithiolene ligand. LOBA results show that the reduction of the monoanion species [1Br](-) is metal-centered and gives a cobalt(II) ion species, [1Br](2-), coordinated to two dianionic ene-1,2-dithiolates. This electronic configuration is in agreement with the solution magnetic moment observed for the analogous salt [1F](2-) (μeff = 2.39 μB). Protonation of [1Br](2-) yields the cobalt(III)-hydride [1Br(CoH)](-) species in which the Co-H bond is computed to be highly covalent (Löwdin populations close to 0.50 on cobalt and hydrogen atoms). Further reduction of [1Br(CoH)](-) forms a more basic cobalt(II)-H intermediate [1Br(CoH)](2-) (S = 0) from which protonation at sulfur gives a S-H bond syn to the Co-H bond. Formation of a cobalt-dihydrogen [1Br(CoH2)](-) intermediate is calculated to occur via a homocoupling (H(•) + H(•) → H2) step with a free energy of activation of 5.9 kcal/mol in solution (via C-PCM approach).

Referência(s)