Artigo Acesso aberto Revisado por pares

Computational screen and experimental validation of anti-influenza effects of quercetin and chlorogenic acid from traditional Chinese medicine

2016; Nature Portfolio; Volume: 6; Issue: 1 Linguagem: Inglês

10.1038/srep19095

ISSN

2045-2322

Autores

Zekun Liu, Junpeng Zhao, Weichen Li, Li Shen, Shengbo Huang, Jingjing Tang, Jie Duan, Fang Fang, Yuelong Huang, Haiyan Chang, Ze Chen, Ran Zhang,

Tópico(s)

Computational Drug Discovery Methods

Resumo

Abstract The Influenza A virus is a great threat for human health, while various subtypes of the virus made it difficult to develop drugs. With the development of state-of-art computational chemistry, computational molecular docking could serve as a virtual screen of potential leading compound. In this study, we performed molecular docking for influenza A H1N1 (A/PR/8/34) with small molecules such as quercetin and chlorogenic acid, which were derived from traditional Chinese medicine. The results showed that these small molecules have strong binding abilities with neuraminidase from H1N1 (A/PR/8/34). Further details showed that the structural features of the molecules might be helpful for further drug design and development. The experiments in vitro , in vivo have validated the anti-influenza effect of quercetin and chlorogenic acid, which indicating comparable protection effects as zanamivir. Taken together, it was proposed that chlorogenic acid and quercetin could be employed as the effective lead compounds for anti-influenza A H1N1.

Referência(s)