Relation of Growth and Development to Temperature Regulation in Nestling Field and Chipping Sparrows
1957; University of Chicago Press; Volume: 30; Issue: 4 Linguagem: Inglês
10.1086/physzool.30.4.30152213
ISSN1937-4267
AutoresWilliam R. Dawson, Francis C. Evans,
Tópico(s)Marine and fisheries research
ResumoPrevious articleNext article No AccessRelation of Growth and Development to Temperature Regulation in Nestling Field and Chipping SparrowsWilliam R. Dawson and Francis C. EvansWilliam R. Dawson and Francis C. EvansPDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by Volume 30, Number 4Oct., 1957 Article DOIhttps://doi.org/10.1086/physzool.30.4.30152213 Views: 15Total views on this site Citations: 75Citations are reported from Crossref Journal History This article was published in Physiological Zoology (1928-1998), which is continued by Physiological and Biochemical Zoology (1999-present). PDF download Crossref reports the following articles citing this article:Yaara Aharon-Rotman, Gerhard Körtner, Chris B. Wacker, Fritz Geiser Do small precocial birds enter torpor to conserve energy during development?, Journal of Experimental Biology 101 (Jan 2020).https://doi.org/10.1242/jeb.231761Jennie M. Carr, Maren E. Gimpel, Daniel M. Small Patterns of Provisioning in Known-Aged Spizella pusilla (Field Sparrow): A Multi-Year Study, Northeastern Naturalist 26, no.33 (Jul 2019): 484.https://doi.org/10.1656/045.026.0303Maria G. Smith, Sara A. Kaiser, T. Scott Sillett, Michael S. Webster Variation in nest characteristics and brooding patterns of female Black-throated Blue Warblers is associated with thermal cues, The Auk 135, no.33 (Jul 2018): 733–747.https://doi.org/10.1642/AUK-17-195.1Fredrik Andreasson, Andreas Nord, Jan-Åke Nilsson Experimentally increased nest temperature affects body temperature, growth and apparent survival in blue tit nestlings, Journal of Avian Biology 49, no.22 (Feb 2018): jav-01620.https://doi.org/10.1111/jav.01620Thomas Raap, Giulia Casasole, David Costantini, Hamada AbdElgawad, Han Asard, Rianne Pinxten, Marcel Eens Artificial light at night affects body mass but not oxidative status in free-living nestling songbirds: an experimental study, Scientific Reports 6, no.11 (Oct 2016).https://doi.org/10.1038/srep35626Fredrik Andreasson, Andreas Nord, Jan-Åke Nilsson Brood size constrains the development of endothermy in blue tits, Journal of Experimental Biology 219, no.1414 (Jul 2016): 2212–2219.https://doi.org/10.1242/jeb.135350Roslyn Dakin, Jenny Q. Ouyang, Ádám Z. Lendvai, Mark F. Haussmann, Ignacio T. Moore, Frances Bonier Weather matters: begging calls are temperature- and size-dependent signals of offspring state, Behaviour 153, no.88 (Jan 2016): 871–896.https://doi.org/10.1163/1568539X-00003370Sarah M. Ludlow, R. Mark Brigham, Stephen K. Davis Nesting ecology of grassland songbirds: effects of predation, parasitism, and weather, The Wilson Journal of Ornithology 126, no.44 (Dec 2014): 686–699.https://doi.org/10.1676/13-176.1Gustavo J. Fernandez, Paulo E. Llambías Parental Risk-Taking Behaviour and Nest Defence During the Nestling Rearing Stage in Northern House Wrens Troglodytes aedon, Acta Ornithologica 48, no.11 (Jun 2013): 55–63.https://doi.org/10.3161/000164513X670016Karen L. Krijgsveld, Robert E. Ricklefs, G. Henk Visser Daily energy expenditure in precocial shorebird chicks: smaller species perform at higher levels, Journal of Ornithology 153, no.44 (Jun 2012): 1203–1214.https://doi.org/10.1007/s10336-012-0851-1Robert J. Epting, Roy S. Delotelle Competitive Positioning as an Indicator of Nestling Survival in Red-cockaded Woodpeckers, Environmental Bioindicators 4, no.44 (Dec 2009): 335–355.https://doi.org/10.1080/15555270903458301Scott Forbes Sibling Symbiosis in Nestling Birds, The Auk 124, no.11 (Jan 2007): 1–10.https://doi.org/10.1093/auk/124.1.1Scott Forbes SIBLING SYMBIOSIS IN NESTLING BIRDS, The Auk 124, no.11 (Jan 2007): 1.https://doi.org/10.1642/0004-8038(2007)124[1:SSINB]2.0.CO;2Gabrielle A. Archard, Raleigh J. Robertson, David Jones, Jodie Painter, Ross Crozier, Michael F. Clarke Brooding behaviour in the cooperatively breeding Bell Miner ( Manorina melanophrys ), Emu - Austral Ornithology 106, no.22 (Dec 2016): 105–112.https://doi.org/10.1071/MU05032K.L. Krijgsveld, G.H. Visser, S. Daan Foraging behavior and physiological changes in precocial quail chicks in response to low temperatures, Physiology & Behavior 79, no.22 (Jul 2003): 311–319.https://doi.org/10.1016/S0031-9384(03)00117-3R. E. Ricklefs Is rate of ontogenetic growth constrained by resource supply or tissue growth potential? A comment on West et al .'s model, Functional Ecology 17, no.33 (Jun 2003): 384–393.https://doi.org/10.1046/j.1365-2435.2003.00745.xJan Eivind Østnes, BjØrn Munro Jenssen, Claus Bech, D. Nettleship Growth and Development of Homeothermy in Nestling European Shags (Phalacrocorax Aristotelis), The Auk 118, no.44 (Oct 2001): 983–995.https://doi.org/10.1093/auk/118.4.983Claus Bech Growth and Development of Homeothermy in Nestling European Shags (Phalacrocorax aristotelis), The Auk 118, no.44 (Oct 2001): 983–995.https://doi.org/10.2307/4089847 K. L. Krijgsveld , J. M. Olson , and R. E. Ricklefs Catabolic Capacity of the Muscles of Shorebird Chicks: Maturation of Function in Relation to Body Size K. L. Krijgsveld, J. M. Olson, and R. E. Ricklefs, Physiological and Biochemical Zoology 74, no.22 (Jul 2015): 250–260.https://doi.org/10.1086/319655 References, (Jan 2001): 131–160.https://doi.org/10.1016/B978-012675555-8/50008-7Maria Elena Pereyra, Martin L. Morton Nestling Growth and Thermoregulatory Development in Subalpine Dusky Flycatchers, The Auk 118, no.11 (Jan 2001): 116–136.https://doi.org/10.1093/auk/118.1.116Maria Elena Pereyra, Martin L. Morton NESTLING GROWTH AND THERMOREGULATORY DEVELOPMENT IN SUBALPINE DUSKY FLYCATCHERS, The Auk 118, no.11 (Jan 2001): 116.https://doi.org/10.1642/0004-8038(2001)118[0116:NGATDI]2.0.CO;2Jan Eivind Østnes, BjØrn Munro Jenssen, Claus Bech GROWTH AND DEVELOPMENT OF HOMEOTHERMY IN NESTLING EUROPEAN SHAGS (PHALACROCORAX ARISTOTELIS), The Auk 118, no.44 (Jan 2001): 983.https://doi.org/10.1642/0004-8038(2001)118[0983:GADOHI]2.0.CO;2Martin L. Morton Nestling Growth and Thermoregulatory Development in Subalpine Dusky Flycatchers, The Auk 118, no.11 (Jan 2001): 116–136.https://doi.org/10.2307/4089762Dirk E. Burhans Avoiding the Nest: Responses of Field Sparrows to the Threat of Nest Predation, The Auk 117, no.33 (Jul 2000): 803–806.https://doi.org/10.1093/auk/117.3.803W.R. DAWSON, G.C. WHITTOW Regulation of Body Temperature, (Jan 2000): 343–390.https://doi.org/10.1016/B978-012747605-6/50015-8Dirk E. Burhans Avoiding the Nest: Responses of Field Sparrows to the Threat of Nest Predation, The Auk 117, no.33 (Jan 2000): 803.https://doi.org/10.1642/0004-8038(2000)117[0803:ATNROF]2.0.CO;2G A Lozano, R E Lemon Parental-care responses by yellow warblers ( Dendroica petechia ) to simultaneous manipulations of food abundance and brood size, Canadian Journal of Zoology 76, no.55 (May 1998): 916–924.https://doi.org/10.1139/z98-011 James T. Pearson Development of Thermoregulation and Posthatching Growth in the Altricial Cockatiel Nymphicus hollandicus Pearson, Physiological Zoology 71, no.22 (Sep 2015): 237–244.https://doi.org/10.1086/515903Carol M. Vleck, David Vleck Embryonic Energetics, (Jan 1996): 417–454.https://doi.org/10.1007/978-1-4613-0425-8_12Nicolaas A. M. Verbeek Body temperature and growth of nestling Northwestern Crows, Corvus caurinus, Canadian Journal of Zoology 73, no.66 (Jun 1995): 1019–1023.https://doi.org/10.1139/z95-122C. Finke, A. Misovic, R. Prinzinger GROWTH, THE DEVELOPMENT OF ENDOTHERMY, AND TORPIDITY IN BLUE-NAPED MOUSEBIRDS UROCOLIUS MACROURUS, Ostrich 66, no.11 (Oct 2010): 1–9.https://doi.org/10.1080/00306525.1995.9632704Douglas J. Forsyth, Christopher F. Hinks, Neil D. Westcott Feeding by clay-colored sparrows on grasshoppers and toxicity of carbofuran residues, Environmental Toxicology and Chemistry 13, no.55 (May 1994): 781–788.https://doi.org/10.1002/etc.5620130513D.R. Webb Maternal-nestling contact geometry and heat transfer in an altricial bird, Journal of Thermal Biology 18, no.22 (Apr 1993): 117–124.https://doi.org/10.1016/0306-4565(93)90024-N G. Causey Whittow , and Hiroshi Tazawa The Early Development of Thermoregulation in Birds, Physiological Zoology 64, no.66 (Sep 2015): 1371–1390.https://doi.org/10.1086/physzool.64.6.30158220Mark K. Sogge, Michael D. Kern, Robert Kern, Charles van Riper Growth and Development of Thermoregulation in Nestling San Miguel Island Song Sparrows, The Condor 93, no.33 (Aug 1991): 773–776.https://doi.org/10.2307/1368215H. Tazawa, H. Wakayama, J.S. Turner, C.V. Paganelli Metabolic compensation for gradual cooling in developing chick embryos, Comparative Biochemistry and Physiology Part A: Physiology 89, no.22 (Jan 1988): 125–129.https://doi.org/10.1016/0300-9629(88)91068-7 Joseph B. Williams , and Kenneth A. Nagy Water Flux and Energetics of Nestling Savannah Sparrows in the Field, Physiological Zoology 58, no.55 (Sep 2015): 515–525.https://doi.org/10.1086/physzool.58.5.30158579Karl-L. Schuchmann Morpho- und Thermogenese nestjunger Blaukehlkolibris (Lampornis clemenciae), Journal für Ornithologie 126, no.33 (Jul 1985): 305–308.https://doi.org/10.1007/BF01640374L. Clark Consequences of homeothermic capacity of nestlings on parental care in the european starling, Oecologia 65, no.33 (Feb 1985): 387–393.https://doi.org/10.1007/BF00378914Olin Sewall Pettingill Young and Their Development, (Jan 1985): 313–328.https://doi.org/10.1016/B978-0-12-552455-1.50022-8OLIN SEWALL PETTINGILL YOUNG AND THEIR DEVELOPMENT, (Jan 1984): 370–387.https://doi.org/10.1016/B978-0-12-552450-6.50022-9D.R. Webb, J.R. King Heat-transfer relations of avian nestlings, Journal of Thermal Biology 8, no.44 (Oct 1983): 301–310.https://doi.org/10.1016/0306-4565(83)90013-XRichard J. Mishaga, Walter G. Whitford Temperature regulation and metabolism in developing white-necked ravens, Comparative Biochemistry and Physiology Part A: Physiology 74, no.33 (Jan 1983): 605–613.https://doi.org/10.1016/0300-9629(83)90555-8 Richard W. Hill , and Donald L. Beaver Inertial Thermostability and Thermoregulation in Broods of Redwing Blackbirds, Physiological Zoology 55, no.33 (Sep 2015): 250–266.https://doi.org/10.1086/physzool.55.3.30157889Richard L. Marsh, Steven J. Wickler The role of muscle development in the transition to endothermy in nestling bank swallows,Riparia riparia, Journal of Comparative Physiology ? B 149, no.11 (Jan 1982): 99–105.https://doi.org/10.1007/BF00735720Jack C Turner, Lon McClanahan Physiogenesis of endothermy and its relation to growth in the great horned owl, Bubo virginianus, Comparative Biochemistry and Physiology Part A: Physiology 68, no.22 (Jan 1981): 167–173.https://doi.org/10.1016/0300-9629(81)90337-6Michael J Hamas Thermoregulatory development in the belted kingfisher, Comparative Biochemistry and Physiology Part A: Physiology 69, no.11 (Jan 1981): 149–152.https://doi.org/10.1016/0300-9629(81)90652-6P. POCZOPKO THE ENVIRONMENTAL PHYSIOLOGY OF JUVENILE ANIMALS, (Jan 1981): 109–130.https://doi.org/10.1016/B978-0-408-10688-7.50013-8 Richard L. Marsh Development of Endothermy in Nestling Bank Swallows (Riparia riparia), Physiological Zoology 52, no.33 (Sep 2015): 340–353.https://doi.org/10.1086/physzool.52.3.30155755 Nathaniel T. Wheelwright , and P. Dee Boersma Egg Chilling and the Thermal Environment of the Fork-Tailed Storm Petrel (Oceanodroma furcata) Nest, Physiological Zoology 52, no.22 (Sep 2015): 231–239.https://doi.org/10.1086/physzool.52.2.30152566Raymond J. O'Connor Structure in avian growth patterns: a multivariate study of passerine development, Journal of Zoology 185, no.22 (Aug 2009): 147–172.https://doi.org/10.1111/j.1469-7998.1978.tb03319.xCharles R Blem The energetics of young Japanese quail, Coturnix coturnix japonica, Comparative Biochemistry and Physiology Part A: Physiology 59, no.22 (Jan 1978): 219–223.https://doi.org/10.1016/0300-9629(78)90210-4J. A. L. Mertens Thermal conditions for successful breeding in Great Tits (Parus major L.), Oecologia 28, no.11 (Mar 1977): 1–29.https://doi.org/10.1007/BF00346834G. C. Whittow Energy Metabolism, (Jan 1976): 174–184.https://doi.org/10.1007/978-3-642-96274-5_8Erica H. Dunn The Timing of Endothermy in the Development of Altrical Birds, The Condor 77, no.33 (Oct 1975): 288–293.https://doi.org/10.2307/1366224Raymond J. O'Connor Nestling thermolysis and developmental change in body temperature, Comparative Biochemistry and Physiology Part A: Physiology 52, no.33 (Jan 1975): 419–422.https://doi.org/10.1016/S0300-9629(75)80058-2Charles R. Blem Energetics of nestling house sparrows Passer domesticus, Comparative Biochemistry and Physiology Part A: Physiology 52, no.22 (Jan 1975): 305–312.https://doi.org/10.1016/S0300-9629(75)80092-2Jack W. Hudson, William R. Dawson, Richard W. Hill Growth and development of temperature regulation in nestling cattle egrets, Comparative Biochemistry and Physiology Part A: Physiology 49, no.44 (Dec 1974): 717–741.https://doi.org/10.1016/0300-9629(74)90900-1Barbara Diehl, Andrzej Myrcha Bioenergetics of Nestling Red-Backed Shrikes (Lanius collurio), The Condor 75, no.33 (Oct 1973): 259–264.https://doi.org/10.2307/1366165Charles M. Neal Cooling Rates and Development of Homeothermy in the Brown-Headed Cowbird (Molothrus ater ater), The Condor 75, no.33 (Oct 1973): 351–352.https://doi.org/10.2307/1366181Robert F. Gotie, James C. Kroll Growth Rate and Ontogeny of Thermoregulation in Nestling Great-Tailed Grackles, Cassidix mexicanus prosopidicola (Icteridae), The Condor 75, no.22 (Jul 1973): 190–199.https://doi.org/10.2307/1365867Marvin H. Bernstein Development of thermoregulation in painted quail, Excalfactoria chinensis, Comparative Biochemistry and Physiology Part A: Physiology 44, no.22 (Feb 1973): 355–366.https://doi.org/10.1016/0300-9629(73)90488-X Eugene S. Morton On the Evolutionary Advantages and Disadvantages of Fruit Eating in Tropical Birds, The American Naturalist 107, no.953953 (Oct 2015): 8–22.https://doi.org/10.1086/282813Charles G. Yarbrough The influence of distribution and ecology on the thermoregulation of small birds, Comparative Biochemistry and Physiology Part A: Physiology 39, no.22 (Jun 1971): 235–266.https://doi.org/10.1016/0300-9629(71)90082-XMarvin H. Bernstein Cutaneous and respiratory evaporation in the painted quail, Excalfactoria chinensis, during ontogeny of thermoregulation, Comparative Biochemistry and Physiology Part A: Physiology 38, no.33 (Mar 1971): 611–617.https://doi.org/10.1016/0300-9629(71)90128-9Charles G. Yarbrough The development of endothermy in nestling gray-crowned rosy finches, Leucosticte tephrocotis griseonucha, Comparative Biochemistry and Physiology 34, no.44 (Jun 1970): 917–925.https://doi.org/10.1016/0010-406X(70)91015-7Robert E. Ricklefs, F. Reed Hainsworth Temperature Regulation in Nestling Cactus Wrens: The Nest Environment, The Condor 71, no.11 (Jan 1969): 32–37.https://doi.org/10.2307/1366045Robert E. Ricklefs PATTERNS OF GROWTH IN BIRDS, Ibis 110, no.44 (Apr 2008): 419–451.https://doi.org/10.1111/j.1474-919X.1968.tb00058.xRobert E. Ricklefs, F. Reed Hainsworth Temperature Regulation in Nestling Cactus Wrens: The Development of Homeothermy, The Condor 70, no.22 (Apr 1968): 121–127.https://doi.org/10.2307/1365955Robert E. Ricklefs Relative Growth, Body Constituents, and Energy Content of Nestling Barn Swallows and Red-Winged Blackbirds, The Auk 84, no.44 (Oct 1967): 560–570.https://doi.org/10.2307/4083336 R. P. Breitenbach , and T. S. Baskett Ontogeny of Thermoregulation in the Mourning Dove, Physiological Zoology 40, no.33 (Sep 2015): 207–217.https://doi.org/10.1086/physzool.40.3.30152858JAMES R. KING, DONALD S. FARNER Energy Metabolism, Thermoregulation and Body Temperature, (Jan 1961): 215–288.https://doi.org/10.1016/B978-1-4832-3143-3.50014-9William R. Dawson, Francis C. Evans Relation of Growth and Development to Temperature Regulation in Nestling Vesper Sparrows, The Condor 62, no.55 (Sep 1960): 329–340.https://doi.org/10.2307/1365163Richard C. Banks Development of Nestling White-Crowned Sparrows in Central Coastal California, The Condor 61, no.22 (Mar 1959): 96–109.https://doi.org/10.2307/1365212
Referência(s)