Revisão Acesso aberto Revisado por pares

The Intestinal Immune System in Obesity and Insulin Resistance

2016; Cell Press; Volume: 23; Issue: 3 Linguagem: Inglês

10.1016/j.cmet.2016.01.003

ISSN

1932-7420

Autores

Daniel A. Winer, Helen Luck, Sue Tsai, Shawn Winer,

Tópico(s)

Gut microbiota and health

Resumo

Obesity and insulin resistance are associated with chronic inflammation in metabolic tissues such as adipose tissue and the liver. Recently, growing evidence has implicated the intestinal immune system as an important contributor to metabolic disease. Obesity predisposes to altered intestinal immunity and is associated with changes to the gut microbiota, intestinal barrier function, gut-residing innate and adaptive immune cells, and oral tolerance to luminal antigens. Accordingly, the gut immune system may represent a novel therapeutic target for systemic inflammation in insulin resistance. This review discusses the emerging field of intestinal immunity in obesity-related insulin resistance and how it affects metabolic disease. Obesity and insulin resistance are associated with chronic inflammation in metabolic tissues such as adipose tissue and the liver. Recently, growing evidence has implicated the intestinal immune system as an important contributor to metabolic disease. Obesity predisposes to altered intestinal immunity and is associated with changes to the gut microbiota, intestinal barrier function, gut-residing innate and adaptive immune cells, and oral tolerance to luminal antigens. Accordingly, the gut immune system may represent a novel therapeutic target for systemic inflammation in insulin resistance. This review discusses the emerging field of intestinal immunity in obesity-related insulin resistance and how it affects metabolic disease. Obesity has reached epidemic proportions. The World Health Organization (WHO) estimates that over 1.9 billion people are overweight, of which 600 million are obese. Obesity is associated with numerous complications, including insulin resistance and type 2 diabetes, but also increased risks of cancer and cardiovascular and autoimmune diseases, among others. Obesity is associated with low-grade chronic inflammation, which may be the precipitating factor for many of its associated complications. Increased circulating levels of tumor necrosis factor α (TNF-α), interleukin-1 (IL-1), and IL-6 in obese humans and in diet-induced obese (DIO) mice contribute to the development of insulin resistance and subsequent type 2 diabetes (Hotamisligil et al., 1993Hotamisligil G.S. Shargill N.S. Spiegelman B.M. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance.Science. 1993; 259: 87-91Crossref PubMed Google Scholar, Olefsky and Glass, 2010Olefsky J.M. Glass C.K. Macrophages, inflammation, and insulin resistance.Annu. Rev. Physiol. 2010; 72: 219-246Crossref PubMed Scopus (834) Google Scholar). This effect occurs as a result of increased serine phosphorylation of insulin receptor substrate 1 (IRS-1) and IRS-2 and activation of suppressor of cytokine signaling (SOCS), which reduces the insulin receptor’s ability to transmit downstream signals in insulin-responsive tissues such as the liver, muscle, and adipose tissue (Biddinger and Kahn, 2006Biddinger S.B. Kahn C.R. From mice to men: insights into the insulin resistance syndromes.Annu. Rev. Physiol. 2006; 68: 123-158Crossref PubMed Scopus (359) Google Scholar). Inflammation in visceral adipose tissue (VAT) is a major driver of insulin resistance. VAT inflammation in obesity is a result of tissue accumulation of pro-inflammatory immune cells that include M1 macrophages (Lumeng et al., 2007Lumeng C.N. Bodzin J.L. Saltiel A.R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization.J. Clin. Invest. 2007; 117: 175-184Crossref PubMed Scopus (1435) Google Scholar, Weisberg et al., 2003Weisberg S.P. McCann D. Desai M. Rosenbaum M. Leibel R.L. Ferrante Jr., A.W. Obesity is associated with macrophage accumulation in adipose tissue.J. Clin. Invest. 2003; 112: 1796-1808Crossref PubMed Scopus (4179) Google Scholar, Xu et al., 2003Xu H. Barnes G.T. Yang Q. Tan G. Yang D. Chou C.J. Sole J. Nichols A. Ross J.S. Tartaglia L.A. Chen H. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance.J. Clin. Invest. 2003; 112: 1821-1830Crossref PubMed Scopus (3052) Google Scholar), CD8+ T cells (Nishimura et al., 2009Nishimura S. Manabe I. Nagasaki M. Eto K. Yamashita H. Ohsugi M. Otsu M. Hara K. Ueki K. Sugiura S. et al.CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity.Nat. Med. 2009; 15: 914-920Crossref PubMed Scopus (727) Google Scholar), Th1 T cells (Winer et al., 2009Winer S. Chan Y. Paltser G. Truong D. Tsui H. Bahrami J. Dorfman R. Wang Y. Zielenski J. Mastronardi F. et al.Normalization of obesity-associated insulin resistance through immunotherapy.Nat. Med. 2009; 15: 921-929Crossref PubMed Scopus (511) Google Scholar), B cells (Winer et al., 2011Winer D.A. Winer S. Shen L. Wadia P.P. Yantha J. Paltser G. Tsui H. Wu P. Davidson M.G. Alonso M.N. et al.B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies.Nat. Med. 2011; 17: 610-617Crossref PubMed Scopus (251) Google Scholar), natural killer (NK) cells (Revelo et al., 2014Revelo X.S. Tsai S. Lei H. Luck H. Ghazarian M. Tsui H. Shi S.Y. Schroer S. Luk C. Lin G.H. et al.Perforin is a novel immune regulator of obesity-related insulin resistance.Diabetes. 2014; 64: 90-103Crossref PubMed Scopus (8) Google Scholar, Wensveen et al., 2015Wensveen F.M. Jelenčić V. Valentić S. Šestan M. Wensveen T.T. Theurich S. Glasner A. Mendrila D. Štimac D. Wunderlich F.T. et al.NK cells link obesity-induced adipose stress to inflammation and insulin resistance.Nat. Immunol. 2015; 16: 376-385Crossref PubMed Scopus (0) Google Scholar), and neutrophils (Talukdar et al., 2012Talukdar S. Oh Y. Bandyopadhyay G. Li D. Xu J. McNelis J. Lu M. Li P. Yan Q. Zhu Y. et al.Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase.Nat. Med. 2012; 18: 1407-1412Crossref PubMed Scopus (170) Google Scholar) and a reduction in the proportion of anti-inflammatory immune cells such as M2 macrophages (Lumeng et al., 2007Lumeng C.N. Bodzin J.L. Saltiel A.R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization.J. Clin. Invest. 2007; 117: 175-184Crossref PubMed Scopus (1435) Google Scholar), regulatory T cells (Tregs) (Feuerer et al., 2009Feuerer M. Herrero L. Cipolletta D. Naaz A. Wong J. Nayer A. Lee J. Goldfine A.B. Benoist C. Shoelson S. Mathis D. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters.Nat. Med. 2009; 15: 930-939Crossref PubMed Scopus (634) Google Scholar, Winer et al., 2009Winer S. Chan Y. Paltser G. Truong D. Tsui H. Bahrami J. Dorfman R. Wang Y. Zielenski J. Mastronardi F. et al.Normalization of obesity-associated insulin resistance through immunotherapy.Nat. Med. 2009; 15: 921-929Crossref PubMed Scopus (511) Google Scholar), eosinophils (Wu et al., 2011aWu D. Molofsky A.B. Liang H.E. Ricardo-Gonzalez R.R. Jouihan H.A. Bando J.K. Chawla A. Locksley R.M. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis.Science. 2011; 332: 243-247Crossref PubMed Scopus (337) Google Scholar), and type 2 innate lymphoid cells (ILC2s) (Brestoff et al., 2015Brestoff J.R. Kim B.S. Saenz S.A. Stine R.R. Monticelli L.A. Sonnenberg G.F. Thome J.J. Farber D.L. Lutfy K. Seale P. Artis D. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity.Nature. 2015; 519: 242-246Crossref PubMed Scopus (48) Google Scholar, Molofsky et al., 2013Molofsky A.B. Nussbaum J.C. Liang H.E. Van Dyken S.J. Cheng L.E. Mohapatra A. Chawla A. Locksley R.M. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages.J. Exp. Med. 2013; 210: 535-549Crossref PubMed Scopus (136) Google Scholar). In addition to VAT, other organs display low-grade chronic inflammatory changes that may also contribute to insulin resistance. These organs include the liver, muscle, pancreas, brain, and small and large intestine. The gut contains an extensive immune system because it is exposed to microbial antigens and ingested antigens from the diet. However, only recently have inflammatory and immune cell changes in the bowel been investigated in depth as a link to obesity and insulin resistance (Garidou et al., 2015Garidou L. Pomié C. Klopp P. Waget A. Charpentier J. Aloulou M. Giry A. Serino M. Stenman L. Lahtinen S. et al.The Gut Microbiota Regulates Intestinal CD4 T Cells Expressing RORγt and Controls Metabolic Disease.Cell Metab. 2015; 22: 100-112Abstract Full Text Full Text PDF PubMed Scopus (7) Google Scholar, Luck et al., 2015Luck H. Tsai S. Chung J. Clemente-Casares X. Ghazarian M. Revelo X.S. Lei H. Luk C.T. Shi S.Y. Surendra A. et al.Regulation of obesity-related insulin resistance with gut anti-inflammatory agents.Cell Metab. 2015; 21: 527-542Abstract Full Text Full Text PDF PubMed Google Scholar, Monteiro-Sepulveda et al., 2015Monteiro-Sepulveda M. Touch S. Mendes-Sá C. André S. Poitou C. Allatif O. Cotillard A. Fohrer-Ting H. Hubert E.L. Remark R. et al.Jejunal T Cell Inflammation in Human Obesity Correlates with Decreased Enterocyte Insulin Signaling.Cell Metab. 2015; 22: 113-124Abstract Full Text Full Text PDF PubMed Google Scholar). This review describes evidence for and against immune cell-mediated, low-grade intestinal inflammation as an emerging feature and potential driving force behind the development of obesity-associated insulin resistance. It also briefly examines the mechanisms, including dysbiosis, changes in intestinal permeability, and alterations in oral tolerance, by which the intestinal immune system may affect systemic inflammation and insulin resistance. Moreover, clinical implications regarding the design of low-toxicity, gut-specific therapies targeting the gut immune system are also described. The small and large intestines are home to over a trillion microorganisms consisting of hundreds of species. Increasing evidence links changes in intestinal bacteria to the development of obesity and glucose intolerance. Evidence for this notion stems from the initial observation that germ-free mice have reduced body fat and do not develop obesity or insulin resistance when placed on a high-fat diet (HFD) (Bäckhed et al., 2004Bäckhed F. Ding H. Wang T. Hooper L.V. Koh G.Y. Nagy A. Semenkovich C.F. Gordon J.I. The gut microbiota as an environmental factor that regulates fat storage.Proc. Natl. Acad. Sci. USA. 2004; 101: 15718-15723Crossref PubMed Scopus (1631) Google Scholar, Bäckhed et al., 2007Bäckhed F. Manchester J.K. Semenkovich C.F. Gordon J.I. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice.Proc. Natl. Acad. Sci. USA. 2007; 104: 979-984Crossref PubMed Scopus (745) Google Scholar). However, germ-free mice regain adiposity and develop insulin resistance and glucose intolerance 2 weeks after reconstitution with the gut microbiota of conventionally raised mice (Bäckhed et al., 2004Bäckhed F. Ding H. Wang T. Hooper L.V. Koh G.Y. Nagy A. Semenkovich C.F. Gordon J.I. The gut microbiota as an environmental factor that regulates fat storage.Proc. Natl. Acad. Sci. USA. 2004; 101: 15718-15723Crossref PubMed Scopus (1631) Google Scholar). This effect occurred even with reduced food intake, providing further evidence that gut bacteria are regulators of energy metabolism. Obesity and metabolic syndrome are associated with an altered gut microbiota, known as dysbiosis (Turnbaugh et al., 2006Turnbaugh P.J. Ley R.E. Mahowald M.A. Magrini V. Mardis E.R. Gordon J.I. An obesity-associated gut microbiome with increased capacity for energy harvest.Nature. 2006; 444: 1027-1031Crossref PubMed Scopus (2599) Google Scholar). In mice and humans, metagenomic analysis showed that most bacteria in the distal gut and feces belong to two main bacterial phyla, Bacteroidetes and Firmicutes (Gill et al., 2006Gill S.R. Pop M. Deboy R.T. Eckburg P.B. Turnbaugh P.J. Samuel B.S. Gordon J.I. Relman D.A. Fraser-Liggett C.M. Nelson K.E. Metagenomic analysis of the human distal gut microbiome.Science. 2006; 312: 1355-1359Crossref PubMed Scopus (1551) Google Scholar). Lean mice maintain a relative balance among these two bacterial phyla, but, in models of obese mice, an increased ratio of Firmicutes to Bacteroidetes is described most frequently (Ley et al., 2005Ley R.E. Bäckhed F. Turnbaugh P. Lozupone C.A. Knight R.D. Gordon J.I. Obesity alters gut microbial ecology.Proc. Natl. Acad. Sci. USA. 2005; 102: 11070-11075Crossref PubMed Scopus (1538) Google Scholar, Turnbaugh et al., 2006Turnbaugh P.J. Ley R.E. Mahowald M.A. Magrini V. Mardis E.R. Gordon J.I. An obesity-associated gut microbiome with increased capacity for energy harvest.Nature. 2006; 444: 1027-1031Crossref PubMed Scopus (2599) Google Scholar). However, some studies show opposite results, suggesting that this issue is not fully resolved (Carvalho et al., 2012Carvalho B.M. Guadagnini D. Tsukumo D.M. Schenka A.A. Latuf-Filho P. Vassallo J. Dias J.C. Kubota L.T. Carvalheira J.B. Saad M.J. Modulation of gut microbiota by antibiotics improves insulin signalling in high-fat fed mice.Diabetologia. 2012; 55: 2823-2834Crossref PubMed Scopus (29) Google Scholar, Schwiertz et al., 2010Schwiertz A. Taras D. Schäfer K. Beijer S. Bos N.A. Donus C. Hardt P.D. Microbiota and SCFA in lean and overweight healthy subjects.Obesity (Silver Spring). 2010; 18: 190-195Crossref PubMed Scopus (410) Google Scholar). More recently, large-scale metagenomics studies in humans linked microbial gene signatures to features of metabolic syndrome (Karlsson et al., 2013Karlsson F.H. Tremaroli V. Nookaew I. Bergström G. Behre C.J. Fagerberg B. Nielsen J. Bäckhed F. Gut metagenome in European women with normal, impaired and diabetic glucose control.Nature. 2013; 498: 99-103Crossref PubMed Scopus (271) Google Scholar, Le Chatelier et al., 2013Le Chatelier E. Nielsen T. Qin J. Prifti E. Hildebrand F. Falony G. Almeida M. Arumugam M. Batto J.M. Kennedy S. et al.MetaHIT consortiumRichness of human gut microbiome correlates with metabolic markers.Nature. 2013; 500: 541-546Crossref PubMed Scopus (358) Google Scholar, Qin et al., 2012Qin J. Li Y. Cai Z. Li S. Zhu J. Zhang F. Liang S. Zhang W. Guan Y. Shen D. et al.A metagenome-wide association study of gut microbiota in type 2 diabetes.Nature. 2012; 490: 55-60Crossref PubMed Scopus (560) Google Scholar). In one study, low bacterial richness, indicated by a low microbial gene count in fecal DNA, correlated with dyslipidemia, insulin resistance, and inflammation (Le Chatelier et al., 2013Le Chatelier E. Nielsen T. Qin J. Prifti E. Hildebrand F. Falony G. Almeida M. Arumugam M. Batto J.M. Kennedy S. et al.MetaHIT consortiumRichness of human gut microbiome correlates with metabolic markers.Nature. 2013; 500: 541-546Crossref PubMed Scopus (358) Google Scholar). Individuals with a high gene count had a higher prevalence of potentially anti-inflammatory species, such as Faecalibacterium prausnitzii, that are associated with increased production of short-chain fatty acids (SCFAs), including butyrate (Le Chatelier et al., 2013Le Chatelier E. Nielsen T. Qin J. Prifti E. Hildebrand F. Falony G. Almeida M. Arumugam M. Batto J.M. Kennedy S. et al.MetaHIT consortiumRichness of human gut microbiome correlates with metabolic markers.Nature. 2013; 500: 541-546Crossref PubMed Scopus (358) Google Scholar). In an accompanying study, restoring bacterial richness in individuals with a low gene count by diet-induced weight loss improved metabolic outcomes (Cotillard et al., 2013Cotillard A. Kennedy S.P. Kong L.C. Prifti E. Pons N. Le Chatelier E. Almeida M. Quinquis B. Levenez F. Galleron N. et al.ANR MicroObes consortiumDietary intervention impact on gut microbial gene richness.Nature. 2013; 500: 585-588Crossref PubMed Scopus (190) Google Scholar), suggesting that changes in the microbiota could be achieved through diet. Overall, decreased bacterial richness may be an indicator of inflammation and metabolic disease. Consistently, a small study in humans shows that intestinal transfer of fecal microbiotas from lean donors can improve insulin sensitivity and the abundance of butyrate-producing bacteria in recipients with metabolic syndrome (Vrieze et al., 2012Vrieze A. Van Nood E. Holleman F. Salojarvi J. Kootte R.S. Bartelsman J.F. Dallinga-Thie G.M. Ackermans M.T. Serlie M.J. Oozeer R. et al.Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome.Gastroenterology. 2012; 143: 913-916 e7Abstract Full Text Full Text PDF PubMed Scopus (379) Google Scholar). In mice, transfer of gut flora from obese to germ-free mice increased obesity more than gut flora from lean mice, demonstrating that obesity triggers the accumulation of “pathogenic” bacteria that promote its development (Turnbaugh et al., 2006Turnbaugh P.J. Ley R.E. Mahowald M.A. Magrini V. Mardis E.R. Gordon J.I. An obesity-associated gut microbiome with increased capacity for energy harvest.Nature. 2006; 444: 1027-1031Crossref PubMed Scopus (2599) Google Scholar). Consistently, antibiotic treatment of obese mice can reduce adiposity and adipose inflammation and improve glucose metabolism (Cani et al., 2008Cani P.D. Bibiloni R. Knauf C. Waget A. Neyrinck A.M. Delzenne N.M. Burcelin R. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice.Diabetes. 2008; 57: 1470-1481Crossref PubMed Scopus (925) Google Scholar, Membrez et al., 2008Membrez M. Blancher F. Jaquet M. Bibiloni R. Cani P.D. Burcelin R.G. Corthesy I. Mace K. Chou C.J. Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice.FASEB J. 2008; 22: 2416-2426Crossref PubMed Scopus (207) Google Scholar). Alterations in microbial composition are also seen with weight loss, reduced adiposity, and improved metabolic parameters following gastric bypass surgery (Tremaroli et al., 2015Tremaroli V. Karlsson F. Werling M. Ståhlman M. Kovatcheva-Datchary P. Olbers T. Fändriks L. le Roux C.W. Nielsen J. Bäckhed F. Roux-en-Y Gastric Bypass and Vertical Banded Gastroplasty Induce Long-Term Changes on the Human Gut Microbiome Contributing to Fat Mass Regulation.Cell Metab. 2015; 22: 228-238Abstract Full Text Full Text PDF PubMed Scopus (11) Google Scholar, Zhang et al., 2009Zhang H. DiBaise J.K. Zuccolo A. Kudrna D. Braidotti M. Yu Y. Parameswaran P. Crowell M.D. Wing R. Rittmann B.E. Krajmalnik-Brown R. Human gut microbiota in obesity and after gastric bypass.Proc. Natl. Acad. Sci. USA. 2009; 106: 2365-2370Crossref PubMed Scopus (521) Google Scholar), further strengthening the link between obesity, dysbiosis, and metabolic disease. Several mechanisms linking bacteria to the induction of obesity have been described. Gut bacteria suppress the lipoprotein lipase suppressor, also known as fasting-induced adipocyte factor (FIAF) or angiopoietin-like protein 4 (ANGPTL4), in intestinal cells, resulting in increased lipoprotein lipase activity and increased triglyceride storage in adipocytes and the liver (Bäckhed et al., 2004Bäckhed F. Ding H. Wang T. Hooper L.V. Koh G.Y. Nagy A. Semenkovich C.F. Gordon J.I. The gut microbiota as an environmental factor that regulates fat storage.Proc. Natl. Acad. Sci. USA. 2004; 101: 15718-15723Crossref PubMed Scopus (1631) Google Scholar, Bäckhed et al., 2007Bäckhed F. Manchester J.K. Semenkovich C.F. Gordon J.I. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice.Proc. Natl. Acad. Sci. USA. 2007; 104: 979-984Crossref PubMed Scopus (745) Google Scholar). The gut microbiota also controls the metabolism and regulation of bile acid profiles in the bowel that bind to farnesoid X receptor (FXR) and G protein-coupled bile acid receptor TGR5 (Swann et al., 2011Swann J.R. Want E.J. Geier F.M. Spagou K. Wilson I.D. Sidaway J.E. Nicholson J.K. Holmes E. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments.Proc. Natl. Acad. Sci. USA. 2011; 108: 4523-4530Crossref PubMed Scopus (147) Google Scholar, Thomas et al., 2009Thomas C. Gioiello A. Noriega L. Strehle A. Oury J. Rizzo G. Macchiarulo A. Yamamoto H. Mataki C. Pruzanski M. et al.TGR5-mediated bile acid sensing controls glucose homeostasis.Cell Metab. 2009; 10: 167-177Abstract Full Text Full Text PDF PubMed Scopus (414) Google Scholar). Indeed, a gut-restricted FXR agonist reduces diet-induced weight gain, systemic inflammation, and hepatic glucose production (Fang et al., 2015Fang S. Suh J.M. Reilly S.M. Yu E. Osborn O. Lackey D. Yoshihara E. Perino A. Jacinto S. Lukasheva Y. et al.Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance.Nat. Med. 2015; 21: 159-165Crossref PubMed Scopus (34) Google Scholar). Finally, obesity-associated microbiotas may also be more efficient at harvesting energy from the diet by producing enzymes that degrade nutrients more efficiently (Turnbaugh et al., 2006Turnbaugh P.J. Ley R.E. Mahowald M.A. Magrini V. Mardis E.R. Gordon J.I. An obesity-associated gut microbiome with increased capacity for energy harvest.Nature. 2006; 444: 1027-1031Crossref PubMed Scopus (2599) Google Scholar). One major consequence of the altered microbial composition in obesity is increased intestinal permeability, which increases leakage of bacteria or bacterial products such as lipopolysaccharide (LPS) across the intestinal barrier (Amar et al., 2011aAmar J. Chabo C. Waget A. Klopp P. Vachoux C. Bermúdez-Humarán L.G. Smirnova N. Bergé M. Sulpice T. Lahtinen S. et al.Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment.EMBO Mol. Med. 2011; 3: 559-572Crossref PubMed Scopus (148) Google Scholar, Cani et al., 2007Cani P.D. Amar J. Iglesias M.A. Poggi M. Knauf C. Bastelica D. Neyrinck A.M. Fava F. Tuohy K.M. Chabo C. et al.Metabolic endotoxemia initiates obesity and insulin resistance.Diabetes. 2007; 56: 1761-1772Crossref PubMed Scopus (1281) Google Scholar, Cani et al., 2008Cani P.D. Bibiloni R. Knauf C. Waget A. Neyrinck A.M. Delzenne N.M. Burcelin R. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice.Diabetes. 2008; 57: 1470-1481Crossref PubMed Scopus (925) Google Scholar). Bacterial products trigger the innate immune system, resulting in chronic inflammation and metabolic disease. Four weeks of continuous LPS infusion recapitulates many metabolic abnormalities that occur during HFD consumption, such as increased fasting glucose and insulin, increased liver and adipose tissue and body weight, and adipose tissue inflammation (Cani et al., 2007Cani P.D. Amar J. Iglesias M.A. Poggi M. Knauf C. Bastelica D. Neyrinck A.M. Fava F. Tuohy K.M. Chabo C. et al.Metabolic endotoxemia initiates obesity and insulin resistance.Diabetes. 2007; 56: 1761-1772Crossref PubMed Scopus (1281) Google Scholar). Bacterium-related leakage into blood and tissue, such as adipose tissue, can be detected as early as 1 week after starting a HFD and is dependent on the microbial pattern receptors NOD1 or CD14 (Amar et al., 2011aAmar J. Chabo C. Waget A. Klopp P. Vachoux C. Bermúdez-Humarán L.G. Smirnova N. Bergé M. Sulpice T. Lahtinen S. et al.Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment.EMBO Mol. Med. 2011; 3: 559-572Crossref PubMed Scopus (148) Google Scholar). LPS can also enter the systemic circulation and adipose tissue through uptake by chylomicrons (Ghoshal et al., 2009Ghoshal S. Witta J. Zhong J. de Villiers W. Eckhardt E. Chylomicrons promote intestinal absorption of lipopolysaccharides.J. Lipid Res. 2009; 50: 90-97Crossref PubMed Scopus (194) Google Scholar). High-energy intake, especially saturated fat, is correlated with endotoxemia in humans (Amar et al., 2008Amar J. Burcelin R. Ruidavets J.B. Cani P.D. Fauvel J. Alessi M.C. Chamontin B. Ferriéres J. Energy intake is associated with endotoxemia in apparently healthy men.Am. J. Clin. Nutr. 2008; 87: 1219-1223Crossref PubMed Google Scholar), and higher concentrations of bacterial 16S rRNA in the blood are correlated with increased abdominal adiposity and a higher risk for diabetes (Amar et al., 2011bAmar J. Serino M. Lange C. Chabo C. Iacovoni J. Mondot S. Lepage P. Klopp C. Mariette J. Bouchez O. et al.D.E.S.I.R. Study GroupInvolvement of tissue bacteria in the onset of diabetes in humans: evidence for a concept.Diabetologia. 2011; 54: 3055-3061Crossref PubMed Scopus (66) Google Scholar). The mechanisms by which diet-induced obesity is associated with increased intestinal permeability may involve reduced expression of epithelial tight junction proteins such as zonula occludens 1 (ZO-1) and occludin (Cani et al., 2008Cani P.D. Bibiloni R. Knauf C. Waget A. Neyrinck A.M. Delzenne N.M. Burcelin R. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice.Diabetes. 2008; 57: 1470-1481Crossref PubMed Scopus (925) Google Scholar). Increased cytoplasmic sequestration of occludin has also been seen following HFD consumption in obesity-prone Sprague-Dawley rats (de La Serre et al., 2010de La Serre C.B. Ellis C.L. Lee J. Hartman A.L. Rutledge J.C. Raybould H.E. Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation.Am. J. Physiol. Gastrointest. Liver Physiol. 2010; 299: G440-G448Crossref PubMed Scopus (240) Google Scholar), and abnormal distribution of occludin and ZO-1 is seen in ob/ob mice (Brun et al., 2007Brun P. Castagliuolo I. Di Leo V. Buda A. Pinzani M. Palù G. Martines D. Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis.Am. J. Physiol. Gastrointest. Liver Physiol. 2007; 292: G518-G525Crossref PubMed Scopus (310) Google Scholar). Nonetheless, gut bacteria appear to be critical players in gut barrier dysfunction because antibiotic treatment prevented HFD-induced intestinal permeability (Cani et al., 2008Cani P.D. Bibiloni R. Knauf C. Waget A. Neyrinck A.M. Delzenne N.M. Burcelin R. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice.Diabetes. 2008; 57: 1470-1481Crossref PubMed Scopus (925) Google Scholar). Interactions between diet and the microbiota also affect gut epithelial integrity and intestinal homeostasis. For example, non-digestible carbohydrates are fermented in the bowel to produce SCFAs, such as acetate, propionate, and butyrate, that bind to G protein-coupled receptors (GPRs) that suppress inflammation and improve barrier function and diabetes (Gao et al., 2009Gao Z. Yin J. Zhang J. Ward R.E. Martin R.J. Lefevre M. Cefalu W.T. Ye J. Butyrate improves insulin sensitivity and increases energy expenditure in mice.Diabetes. 2009; 58: 1509-1517Crossref PubMed Scopus (235) Google Scholar, Maslowski et al., 2009Maslowski K.M. Vieira A.T. Ng A. Kranich J. Sierro F. Yu D. Schilter H.C. Rolph M.S. Mackay F. Artis D. et al.Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43.Nature. 2009; 461: 1282-1286Crossref PubMed Scopus (646) Google Scholar, Tremaroli and Bäckhed, 2012Tremaroli V. Bäckhed F. Functional interactions between the gut microbiota and host metabolism.Nature. 2012; 489: 242-249Crossref PubMed Scopus (555) Google Scholar). Intestinal mucin produced by goblet cells also contributes to the maintenance of the gut barrier (Vaishnava et al., 2011Vaishnava S. Yamamoto M. Severson K.M. Ruhn K.A. Yu X. Koren O. Ley R. Wakeland E.K. Hooper L.V. The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine.Science. 2011; 334: 255-258Crossref PubMed Scopus (322) Google Scholar). Barrier function is also dependent on the intestinal immune system during HFD feeding and inflammatory disease. Interferon γ (IFNγ)-secreting immune cells are at least partially responsible for HFD-induced barrier permeability because HFD-fed IFNγ-deficient mice show reduced barrier permeability, and IFNγ directly reduced ZO-1 expression in intestinal epithelial cell lines (Luck et al., 2015Luck H. Tsai S. Chung J. Clemente-Casares X. Ghazarian M. Revelo X.S. Lei H. Luk C.T. Shi S.Y. Surendra A. et al.Regulation of obesity-related insulin resistance with gut anti-inflammatory agents.Cell Metab. 2015; 21: 527-542Abstract Full Text Full Text PDF PubMed Google Scholar). IL-1β can also increase intestinal epithelial tight junction permeability (Al-Sadi and Ma, 2007Al-Sadi R.M. Ma T.Y. IL-1beta causes an increase in intestinal epithelial tight junction permeability.J. Immunol. 2007; 178: 4641-4649Crossref PubMed Google Scholar). Other immune cells may exert protective effects on intestinal barrier function, such as IL-22-producing innate lymphoid cells and Tregs, which dampen IFNγ-mediated immunity and promote mucin production and anti-microbial immunoglobulin A (IgA) (Cong et al., 2009Cong Y. Feng T. Fujihashi K. Schoeb T.R. Elson C.O. A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota.Proc. Natl. Acad. Sci. USA. 2009; 106: 19256-19261Crossref PubMed Scopus (146) Google Scholar, Wang et al., 2014Wang X. Ota N. Manzanillo P. Kates L. Zavala-Solorio J. Eidenschenk C. Zhang J. Lesch J. Lee W.P. Ross J. et al.Interleukin-22 alleviates metabolic disorders and restores mucosal immunity in diabetes.Nature. 2014; 514: 237-241Crossref PubMed Scopus (0) Google Scholar). Eosinophils may exert a protective effect on the barrier by an unknown mechanism (Johnson et al., 2015Johnson A.M. Costanzo A. Gareau M.G. Armando A.M. Quehenberger O. Jameson J.M. Olefsky J.M. High

Referência(s)
Altmetric
PlumX