The Pedologic Nature of Weathered Rock
2013; Linguagem: Inglês
10.2136/sssaspecpub34.c2
ISSN2165-9826
AutoresRobert C. Graham, K. R. Tice, William R. Guertal,
Tópico(s)Geological Modeling and Analysis
ResumoChapter 2 The Pedologic Nature of Weathered Rock R. C. Graham, R. C. Graham University of California, Riverside, CaliforniaSearch for more papers by this authorK. R. Tice, K. R. Tice University of California, Riverside, CaliforniaSearch for more papers by this authorWilliam R. Guertal, William R. Guertal Foothill Engineering, Inc., Mercury, NevadaSearch for more papers by this author R. C. Graham, R. C. Graham University of California, Riverside, CaliforniaSearch for more papers by this authorK. R. Tice, K. R. Tice University of California, Riverside, CaliforniaSearch for more papers by this authorWilliam R. Guertal, William R. Guertal Foothill Engineering, Inc., Mercury, NevadaSearch for more papers by this author Book Editor(s):David L. Cremeens, David L. CremeensSearch for more papers by this authorRandall B. Brown, Randall B. BrownSearch for more papers by this authorJ. Herbert Huddleston, J. Herbert HuddlestonSearch for more papers by this author First published: 01 January 1994 https://doi.org/10.2136/sssaspecpub34.c2Citations: 3Book Series:SSSA Special Publications AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary Weathered rock, a common regolith in many areas unaffected by Pleistocene glaciation, has both lithologic and pedologie characteristics. This paper reviews pedogenic features found in weathered rock substrates and interprets the pedologie processes and environmental roles of this regolith. Lithogenic features such as rock structure, texture, and composition strongly influence weathering and resulting weathered rock characteristics. Joint fractures provide access for infiltrating water and roots, which promote weathering. As rock weathers, it develops microporosity, thereby increasing its water-holding capacity, which further enhances weathering and water availability for plants. Plant roots can penetrate the matrix of saprolite, but in less weathered rock they follow fractures, producing localized organic C concentrations as large or larger than in overlying A horizons. Organic acids and CO2 from decomposing roots promote weathering, and K uptake by living roots causes the transformation of biotite to vermiculite, an important weathering mechanism that extensively fractures rocks. Root exploitation of the saprolite matrix diminishes the importance of lithogenic features by producing channels that more effectively conduct water. Water moving from soil into weathered rock carries colloids which are commonly deposited to form argillans in fractures, abandoned root channels, and intergranular pores within the matrix. These argillans are protected from physical disturbances that affect soils and may be better expressed than those in the solum. In arid and semiarid areas, CaCO3 and opaline silica commonly precipitate within the fractures and porous matrix of weathered rock underlying soils. These features can be used to help interpret past environmental conditions. The weathered rock zone is an important and somewhat neglected part of the soil-rock continuum. Research is needed to better understand how it evolves and functions in the environment. References Arkley,R.J.1981.Soil moisture use by mixed conifer forest in a summer-dry climate.Soil Sci. Soc. Am. J. 45: 423–427. 10.2136/sssaj1981.03615995004500020037x ADSWeb of Science®Google Scholar 1980. R.L. Bates, and J.A. Jackson. Glossary of geology. 2nd ed.Am. Geol. Inst.,Falls Church, VA. Google Scholar Baumer,O.W.1983. Soil survey of Washoe County, Nevada, south part.USDA-SCS. U.S. Gov. Print. Office,Washington, DC. Google Scholar Becker,G.F.1895. A reconnaissance of the gold fields of the southern Appalachians. p. 251–331. U.S. Geol. Surv. 16th Annu. Rep., 1894–1895. Part 3.U.S. Gov. Print. Office,Washington, DC. Google Scholar Berthelin,J.1983. Microbial weathering processes. p. 223–262.In W.E. Krumbein (ed.) Microbial geochemistry.Blackwell Sci. Publ.,Oxford, England. Google Scholar Birkeland,P.W.1984. Soils and geomorphology.Oxford Univ. Press,New York. Google Scholar Boettinger,J.L., andR.J.Southard.1991.Silica and carbonate sources for Aridisols on a granitic pediment, western Mojave Desert.Soil Sci. Soc. Am. J. 55: 1057–1067. 10.2136/sssaj1991.03615995005500040028x Web of Science®Google Scholar Brasher,B.R.,G.Borst, andW.D.Nettleton.1976. Weak duripans in weathered rock in a mediterranean climate. p. 158. Agronomy abstracts.ASA,Madison, WI. Google Scholar Brewer,R.1968. Clay illuviation as a factor in particle-size differentiation in soil profiles. p. 489–499. Trans. 9th Int. Cong. Soil Sci. 9, 4. Elsevier Publ. Co., New York. Google Scholar Buol,S.W., andS.B.Weed.1991.Saprolite-soil transformations in the piedmont and mountains of North Carolina.Geoderma. 51: 15–28. 10.1016/0016-7061(91)90064-Z CASWeb of Science®Google Scholar Calvert,C.S.,S.W.Buol, andS.B.Weed.1980.Mineralogical characteristics and transformations of a vertical rock-saprolite-soil sequence in the North Carolina Piedmont: II. Feldspar alteration products-their transformations through the profile.Soil Sci. Soc. Am. J. 44: 1104–1112. 10.2136/sssaj1980.03615995004400050045x CASWeb of Science®Google Scholar Chadwick,O.A.,D.M.Hendricks, andW.D.Nettleton.1987.Silica in duric soils: I. A depositional model.Soil Sci. Soc. Am. J. 51: 975–982. 10.2136/sssaj1987.03615995005100040028x CASWeb of Science®Google Scholar Chapelle,F.H.1993. Ground-water microbiology and geochemistry.John Wiley & Sons,New York. Google Scholar Chartres,C.J., andP.H.Walker.1988.The effect of aeolian accessions on soil development on granitic rocks in south-eastern Australia. III. Micromorphological and geochemical evidence of weathering and soil development.Aust. J. Soil Res. 26: 33–53. 10.1071/SR9880033 CASWeb of Science®Google Scholar Clayton,J.L., andJ.F.Arnold.1972. Practical grain size, fracturing density and weathering classification of intrusive rocks of the Idaho batholith. USDA-FS Gen. Tech. Rep. INT-2.Intermountain For. Range Exp. Stn.,Ogden, UT. Google Scholar Clayton,J.L.,W.F.Megahan, andD.Hampton.1979. Soil and bedrock properties: Weathering and alteration products and processes in the Idaho batholith. USDA-FS Res. Pap. INT-237.Intermountain For. Range Exp. Stn.,Ogden, UT. Google Scholar Daniels,W.L.,C.J.Everett, andL.W.Zelazny.1987.Virgin hardwood forest soils of the southern Appalachian Mountains: I. Soil morphology and geomorphology.Soil Sci. Soc. Am. J. 51: 722–729. 10.2136/sssaj1987.03615995005100030029x ADSWeb of Science®Google Scholar Dixon,J.C., andR.W.Young.1981.Character and origin of deep arenaceous weathering mantles on the Bega Batholith, southeastern Australia.Catena. 8: 97–109. 10.1016/S0341-8162(81)80007-0 CASGoogle Scholar Ehlers,E.G., andH.Blatt.1982. Petrology: Igneous, sedimentary, and metamorphic.W.H. Freeman and Co.,San Francisco, CA. Google Scholar Eswaran,H., andW.C.Bin.1978.A study of a deep weathering proflie on granite in peninsular Malaysia: III. Alteration of feldspars.Soil Sci. Soc. Am. J. 42: 154–158. 10.2136/sssaj1978.03615995004200010034x Web of Science®Google Scholar Fanning,D.S.1970.Cave features: Information concerning the nature and genesis of soils.Soil Sci. Soc. Am. J. 34: 98–104. 10.2136/sssaj1970.03615995003400010029x Google Scholar Fanning,D.S.,V.Z.Kerimidas, andM.A.El-Desoky.1989. Micas. p. 551–634.In J.B. Dixon, and S.B. Weed (ed.) Minerals in soil environments. 2nd ed.SSSA,Madison, WI. 10.2136/sssabookser1.2ed.c12 Google Scholar Folk,R.L., andE.B.Patton.1982.Buttressed expansion of granite and development of grus in central Texas.Z. Geomorphol. 26: 17–32. Google Scholar Gile,L.H.,F.F.Peterson, andR.B.Grossman.1966.Morphological and genetic sequences of carbonate accumulation in desert soils.Soil Sci. 101: 347–360. 10.1097/00010694-196605000-00001 CASADSWeb of Science®Google Scholar Glasmann,J.R., andG.H.Simonson.1985.Alteration of basalt in soils of western Oregon.Soil Sci. Soc. Am. J. 49: 262–273. 10.2136/sssaj1985.03615995004900010053x CASWeb of Science®Google Scholar Goldich,S.S.1938.A study in rock weathering.J. Geo. 46: 17–58. 10.1086/624619 CASADSWeb of Science®Google Scholar Graham,R.C.1986. Geomorphology, mineral weathering, and pedology in an area of the Blue Ridge Front, North Carolina. Ph.D. diss. North Carolina State Univ.Raleigh (Diss. Abstr. 87-01748). Google Scholar Graham,R.C., andS.W.Buol.1990.Soil-geomorphic relations on the Blue Ridge Front: II. Soil characteristics and pedogenesis.Soil Sci. Soc. Am. J. 54: 1367–1377. 10.2136/sssaj1990.03615995005400050028x Web of Science®Google Scholar Graham,R.C., andE.Franco-Vizcaino.1992.Soils on igneous and metavolcanic rocks in the Sonoran Desert of Baja California, Mexico.Geoderma. 54: 1–21. 10.1016/0016-7061(92)90095-O CASWeb of Science®Google Scholar Graham,R.C.,B.E.Herbert, andJ.O.Ervin.1988.Mineralogy and incipient pedogenesis in anorthosite terrane of the San Gabriel Mountains, California.Soil Sci. Soc. Am. J. 52: 738–746. 10.2136/sssaj1988.03615995005200030026x CASWeb of Science®Google Scholar Graham,R.C.,M.M.Diallo, andL.J.Lund.1990.Soils and mineral weathering on phyllite colluvium and serpentinite in northwestern California.Soil Sci. Soc. Am. J. 54: 1682–1690. 10.2136/sssaj1990.03615995005400060030x CASWeb of Science®Google Scholar Guertal,W.R.1992. Physical, chemical, and mineralogical characteristics of selected soil-saprolite sequences in the Lake Hyco region of North Carolina. Ph.D. diss., North Carolina State Univ.Raleigh. (Diss. Abstr. 92-21268). Google Scholar Harden,J.W.,E.M.Taylor,L.D.McFadden, andM.C.Reheis.1991. Calcic, gypsic, and siliceous soil chronosequences in arid and semiarid environments. p. 1–16.In W.D. Nettleton (ed.) Occurrence, characteristics, and genesis of carbonate, gypsum, and silica accumulations in soils. SSSA Spec. Publ. 26.SSSA,Madison, WI. Google Scholar Hellmers,H.,J.S.Horton,G.Juhren, andJ.O'Keefe.1955.Root systems of some chaparral plants in southern California.Ecology. 36: 667–678. 10.2307/1931305 Web of Science®Google Scholar Hills,S.S.1972. Elements of structural geology. 2nd ed.John Wiley & Sons,New York. 10.1007/978-94-009-5843-2 Google Scholar Hunt,C.B.1986. Superficial deposits of the United States.Van Nostrand Reinhold Co.,New York. Google Scholar Inskeep,W.P.,J.L.Clayton, andD.W.Mogk.1993.Naturally weathered plagioclase grains from the Idaho Batholith: Observations using scanning electron microscopy.Soil Sci. Soc. Am. J. 57: 851–860. 10.2136/sssaj1993.03615995005700030036x CASWeb of Science®Google Scholar Jenny,H.1941. Factors of soil formation.McGraw-Hill,New York. 10.1097/00010694-194111000-00009 Google Scholar Jones,D.P., andR.C.Graham.1993.Water-holding characteristics of weathered granitic rock in chaparral and forest ecosystems.Soil Sci. Soc. Am. J. 57: 256–261. 10.2136/sssaj1993.03615995005700010044x ADSWeb of Science®Google Scholar King,H.B.,J.K.Torrance,L.H.Bowen, andC.Wang.1990.Iron concretions in a Typic Dystrochrept in Taiwan.Soil Sci. Soc. Am. J. 54: 462–468. 10.2136/sssaj1990.03615995005400020029x CASWeb of Science®Google Scholar Knecht,A.A.1971. Soil Survey of western Riverside area, California.USDA-SCS. U.S. Gov. Print. Office,Washington, DC. Google Scholar Lappin-Scott,H.M., andJ.W.Costerton.1990.Starvation and penetration of bacteria in soils and rocks.Experientia. 46: 807–812. 10.1007/BF01935529 Web of Science®Google Scholar Lietzke,D.A., andR.S.Weber.1981.The importance of Cr horizons in soil classification and interpretations.Soil Sci. Soc. Am. J. 45: 593–599. 10.2136/sssaj1981.03615995004500030031x Google Scholar McDaniel,P.A., andS.W.Buol.1991.Manganese distributions in acid soils of the North Carolina Piedmont.Soil Sci. Soc. Am. J. 55: 152–158. 10.2136/sssaj1991.03615995005500010027x CASWeb of Science®Google Scholar McDaniel,P.A., andR.C.Graham.1992.Organic carbon distributions in shallow soils of pinyon-juniper woodlands.Soil Sci. Soc. Am. J. 56: 499–504. 10.2136/sssaj1992.03615995005600020026x Web of Science®Google Scholar McKeague,J.A.,D.R.Grant,H.Kodama,G.J.Beke, andC.Wang.1983.Properties and genesis of a soil and the underlying gibbsite-bearing saprolite, Cape Breton Island, Canada.Can. J. Earth Sci. 20: 37–48. 10.1139/e83-004 CASADSWeb of Science®Google Scholar Nettleton,W.D.,K.Flach, andG.Borst.1968. A toposequence of soils in tonalite grus in the southern California Peninsular Range. USDA-SCS Soil Surv. Invest. Rep. no. 21.U.S. Gov. Print. Office,Washington, DC. Google Scholar Nettleton,W.D.,K.W.Flach, andR.E.Nelson.1970.Pedogenic weathering of tonalite in southern California.Geoderma. 4: 387–403. 10.1016/0016-7061(70)90055-8 CASADSWeb of Science®Google Scholar Nettleton,W.D., andF.F.Peterson.1983. Aridisols. p. 165–215.In L.P. Wilding (ed.) et al. Pedogenesis and soil taxonomy: II. The soil orders.Elsevier,Amsterdam, the Netherlands. 10.1016/S0166-2481(08)70616-0 Google Scholar Ollier,C.1984. Weathering. 2nd ed.Longman,New York. Google Scholar Paetzold,R.F., andM.J.Mausbach.1984.Hydraulic properties of some soils with paralithic contacts.Soil Sci. Soc. Am. J. 48: 1355–1359. 10.2136/sssaj1984.03615995004800060031x Google Scholar Pavich,M.J.1986. Processes and rates of saprolite production and erosion on a foliated granitic rock of the Virginia Piedmont. p. 551–590.In S.M. Colman, and D.P. Dethier (ed.) Rates of chemical weathering of rocks and minerals.Acad. Press,Orlando, FL. Google Scholar Pavich,M.J.,G.W.Leo,S.F.Obermeir, andJ.R.Estabrook.1989. Investigation of characteristics, origin, and residence time of the upland residual mantle of the Piedmont of Fairfax County, Virginia. U.S. Geol. Surv. Prof. Pap. 1325.U.S. Gov. Print. Office,Washington, DC. Google Scholar Quade,J., andT.E.Ceding.1990.Stable isotopic evidence for a pedogenic origin of carbonates in Trench 14 near Yucca Mountain, Nevada.Science (Washington, DC). 250: 1549–1552. 10.1126/science.250.4987.1549 CASADSPubMedWeb of Science®Google Scholar Rebertus,R.A., andS.W.Buol.1985a.Iron distribution in a developmental sequence of soils from mica gneiss and schist.Soil Sci. Soc. Am. J. 49: 713–720. 10.2136/sssaj1985.03615995004900030037x CASWeb of Science®Google Scholar Rebertus,R.A., andS.W.Buol.1985b.Intermittancy of illuviation in Dystrochrepts and Hapludults from the Piedmont and Blue Ridge provinces of North Carolina.Geoderma. 36: 277–291. 10.1016/0016-7061(85)90008-4 Web of Science®Google Scholar Rice,T.J.,S.W.Buol, andS.B.Weed.1985.Soil-saprolite profiles derived from mafic rocks in the North Carolina Piedmont: I. Chemical, morphological, and mineralogical characteristics and transformations.Soil Sci. Soc. Am. J. 49: 171–178. 10.2136/sssaj1985.03615995004900010035x CASWeb of Science®Google Scholar Rutherford,G.K., andD.J.Thacker.1988.Characteristics of two mafic saprolites and their associated soil profiles in Canada.Can. J. Soil Sci. 68: 223–231. Google Scholar Ryan,T.M.1991. Soil survey of Angeles National Forest area, California. USDA-FS and SCS.U.S. Gov. Print. Office,Washington, DC. Google Scholar Saunier,R.E., andR.F.Wagle.1967.Factors affecting the distribution of shrub live oak (Ouercus turbinella Greene).Ecology. 48: 35–41. 10.2307/1933415 Web of Science®Google Scholar Schoeneberger,P., andA.Amoozegar.1990.Directional saturated hydraulic conductivity and macropore morphology of a soil-saprolite sequence.Geoderma. 46: 31–49. 10.1016/0016-7061(90)90005-T ADSWeb of Science®Google Scholar Schoeneberger,P.J.,S.B.Weed,A.Amoozegar, andS.W.Buol.1992.Color zonation associated with fractures in a felsic gneiss saprolite.Soil Sci. Soc. Am. J. 56: 1855–1859. 10.2136/sssaj1992.03615995005600060034x CASWeb of Science®Google Scholar Simpson,G.G.1986. Hydraulic characteristics of soil-saprolite profiles from the North Carolina Piedmont. p. 147–154.In A. Amoozegar (ed.) Proc. Annu. Meet. Soil Sci. Soc. North Carolina. 29th, Raleigh, NC. 21-22 January. Soil Sci. Soc., Raleigh, NC. Google Scholar Simonson,R.W.1959.Outline of a generalized theory of soil genesis.Soil Sci. Soc. Am. Proc. 23: 152–156. 10.2136/sssaj1959.03615995002300020021x CASADSGoogle Scholar Smith,G.D.1986. The Guy Smith interviews: Rationale for concepts inSoil Taxonomy. Soil Manage. Support Serv. Tech. Monogr. no. 11.Cornell Univ.,Ithaca, NY. Google Scholar Soil Survey Staff.1992. Keys to soil taxonomy. 5th ed. Soil Manage. Support Serv. Tech Monogr. no. 19.Pocahontas Press,Blacksburg, VA. Google Scholar Soil Survey Staff.1975. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. USDA-SCS Agric. Handb. 436.U.S. Gov. Print. Office,Washington, DC. Google Scholar Stolt,M.H.,J.C.Baker, andT.W.Simpson.1991.Micromorphology of the soil-saprolite transition zone in Hapludults of Virginia.Soil Sci. Soc. Am. J. 55: 1067–1075. 10.2136/sssaj1991.03615995005500040029x Web of Science®Google Scholar Stolt,M.H.,J.C.Baker, andT.W.Simpson.1992.Characterization and genesis of saprolite derived from gneissic rocks of Virginia.Soil Sci. Soc. Am. J. 56: 531–539. 10.2136/sssaj1992.03615995005600020030x CASWeb of Science®Google Scholar Taylor,D.R.1983. Soil survey of Coconino County area, Arizona, central part. USDA-SCS.U.S. Gov. Print. Office,Washington, DC. Google Scholar Taylor,E.M.1986. Impact of time and climate on Quaternary soils in the Yucca Mountain area of the Nevada Test Site. M.S. thesis. Univ. of Colorado.Boulder. Google Scholar Taylor,E.M., andH.E.Huckins.1986. Carbonate and opaline silica fault-filling on the Bow Ridge Fault, Yucca Mountain, Nevada-deposition from pedogenic processes or upwelling groundwater?. p. 418. Geol. Soc. Am. Abstracts with Programs 18.Flagstaff,AZ. Google Scholar Ugolini,F.C., andR.L.Edmonds.1983. Soil biology. p. 193–231.In L.P. Wilding (ed.) et al. Pedogenesis and soil taxonomy: I. Concepts and interactions.Elsevier,Amsterdam. Google Scholar Vaniman,D.T.,D.L.Bish, andS.Chipera.1988. A preliminary comparison of mineral deposits in faults near Yucca Mountain, Nevada, with possible analogs. Los Alamos Natl. Lab. Rep. LA-11289-MS.Los Alamos, NM. Google Scholar Vepraskas,M.J.,A.G.Jongmans,M.T.Hoover, andJ.Bouma.1991.Hydraulic conductivity of saprolite as determined by channels and porous groundmass.Soil Sci. Soc. Am. J. 55: 932–938. 10.2136/sssaj1991.03615995005500040006x Web of Science®Google Scholar Wahrhaftig,C.1965.Stepped topography of the southern Sierra Nevada, California.Geo. Soc. Am. Bull. 76: 1165–1189. 10.1130/0016-7606(1965)76[1165:STOTSS]2.0.CO;2 ADSWeb of Science®Google Scholar Walker,P.H.,C.J.Chartres, andJ.Hutka.1988.The effect of aeolian accession on soil development on granitic rocks in south-eastern Australia. I. Soil morphology and particlesize distributions.Aust. J. Soil Res. 26: 1–16. CASWeb of Science®Google Scholar Waltman,W.J.,R.L.Cunningham, andE.J.Ciolkosz.1990.Stratigraphy and parent material relationships of red substratum soils on the Allegheny Plateau.Soil Sci. Soc. Am. J. 54: 1049–1057. 10.2136/sssaj1990.03615995005400040020x Web of Science®Google Scholar West,L.T.,L.P.Wilding, andC.T.Hallmark.1988.Calciustolls in central Texas: II. Genesis of calcic and petrocalcic horizons.Soil Sci. Soc. Am. J. 52: 1731–1740. 10.2136/sssaj1988.03615995005200060040x Google Scholar Whalley,W.B.,G.R.Douglas, andJ.P.McGreevy.1982.Crack propagation and associated weathering in igneous rocks.Z. Geomorphol. 26: 33–54. CASGoogle Scholar Citing Literature Whole Regolith Pedology, Volume 34 ReferencesRelatedInformation
Referência(s)